scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Reactive species in non-equilibrium atmospheric-pressure plasmas: Generation, transport, and biological effects

TL;DR: In this paper, the most important mechanisms of generation and transport of the key species in the plasmas of atmospheric-pressure plasma jets and other non-equilibrium atmospheric pressure plasms are introduced and examined from the viewpoint of their applications in plasma hygiene and medicine and other relevant fields.
About: This article is published in Physics Reports.The article was published on 2016-05-04 and is currently open access. It has received 825 citations till now.
Citations
More filters
Journal ArticleDOI
TL;DR: A review of the existing literature on DBDs can be found in this article, where the main part is devoted to the progress on the investigation of different aspects of breakdown and plasma formation with the focus on single filaments or microdischarges.
Abstract: Dielectric Barrier Discharges (DBDs) are plasmas generated in configurations with an insulating (dielectric) material between the electrodes which is responsible for a self-pulsing operation. DBDs are a typical example of nonthermal atmospheric or normal pressure gas discharges. Initially used for the generation of ozone, they have opened up many other fields of application. Therefore DBDs are a relevant tool in current plasma technology as well as an object for fundamental studies. Another motivation for further research is the fact, that so-called partial discharges in insulated high voltage systems are special types of DBDs. The breakdown processes, the formation of structures, and the role of surface processes are currently under investigation. This review is intended to give an update to the already existing literature on DBDs considering the research and development within the last two decades. The main principles and different modes of discharge generation are summarized. A collection of known as well as special electrode configurations and reactor designs will be presented. This shall demonstrate the different and broad possibilities, but also the similarities and common aspects of devices for different fields of applications explored within the last years. The main part is devoted to the progress on the investigation of different aspects of breakdown and plasma formation with the focus on single filaments or microdischarges. This includes a summary of the current knowledge on the electrical characterization of filamentary DBDs. In particular, the recent new insights on the elementary volume and surface memory mechanisms in these discharges will be discussed. An outlook for the forthcoming challenges on research and development will be given. Page 1 of 47 AUTHOR SUBMITTED MANUSCRIPT PSST-101368.R1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 A cc ep e M nu sc rip t Progress on DBD Sources and Filaments 2

473 citations

Journal ArticleDOI
TL;DR: This research successfully demonstrated the possibility of PAW being an effective environmentally benign disinfectant, the activity of which is closely linked to the generation of peroxynitrite, providing much needed insights into the fundamental aspects ofPAW chemistry required for optimisation of the biochemical activity of PAw and translation of this decontamination strategy into real life applications.

259 citations

Journal ArticleDOI
TL;DR: This review presents a succinct review of how novel, efficient methods based on non-equilibrium reactive plasma chemistries can be applied to low-cost natural water sources to produce a prospective product with a wide range of applications while at the same time minimising the process steps and dramatically reducing the use of expensive and/or hazardous reagents.
Abstract: Novel plasma-based technologies that offer maximum efficiency at minimal environmental costs are expected to further promote the sustainable societal and economic development. Unique transfer of chemical reactivity and energy from gaseous plasmas to water takes place in the absence of any other chemicals, but results in a product with a notable transient broad-spectrum biological activity, referred to as plasma-activated water (PAW). These features make PAW a green prospective solution for a wide range of biotechnology applications, from water purification to biomedicine. Here, we present a succinct review of how novel, efficient methods based on non-equilibrium reactive plasma chemistries can be applied to low-cost natural water sources to produce a prospective product with a wide range of applications while at the same time minimising the process steps and dramatically reducing the use of expensive and/or hazardous reagents. Despite the recent exciting developments in this field, there presently is no topical review which specifically focuses on the underlying physics and chemistry related to plasma-activated water. We focus specifically on the PAW generation, origin of reactive species present in PAW, its related analytical chemistry and potentially different mechanisms that regulate the bio-activities of PAW in different biotech-applications and their roles in determining PAW efficacy and selectivity. We then review recent advances in our understanding of plasma-water interactions, briefly outlining current and proposed applications of PAW in agriculture, food and biomedicine. Finally, we outline future research directions and challenges that may hinder translation of these technologies into real-life applications. Overall, this review will provide much needed insights into the fundamental aspects of PAW chemistry required for optimization of the biochemical activity of PAW and translation of this environment- and human-health-friendly, and energy-efficient strategy into real life applications.

242 citations

Journal ArticleDOI
TL;DR: A historical account of the extensive efforts and inventions in the field of emerging food processing technologies since their inception to present day is provided.

227 citations


Cites background from "Reactive species in non-equilibrium..."

  • ...The observed effects in the food processes have largely been attributed to the action of reactive oxygen and nitrogen species produced in plasmas containing oxygen and nitrogen (Lu et al., 2016)....

    [...]

  • ...have largely been attributed to the action of reactive oxygen and nitrogen species produced in plasmas containing oxygen and nitrogen (Lu et al., 2016)....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: The demonstration that O2·- can reduce ferricytochrome c and tetranitromethane, and that superoxide dismutase, by competing for the superoxide radicals, can markedly inhibit these reactions, is demonstrated.

12,468 citations


"Reactive species in non-equilibrium..." refers background in this paper

  • ...[337] - an enzyme that functions by converting O2 to H2O2....

    [...]

Journal ArticleDOI
TL;DR: There is growing evidence that aging involves, in addition, progressive changes in free radical-mediated regulatory processes that result in altered gene expression.
Abstract: At high concentrations, free radicals and radical-derived, nonradical reactive species are hazardous for living organisms and damage all major cellular constituents. At moderate concentrations, how...

9,131 citations


"Reactive species in non-equilibrium..." refers background in this paper

  • ...of oxidative stress lead to damaging effects [350]....

    [...]

Journal ArticleDOI
TL;DR: Current evidence indicates that most of the cytotoxicity attributed to NO is rather due to peroxynitrite, produced from the diffusion-controlled reaction between NO and another free radical, the superoxide anion, which is presented in detail in this review.
Abstract: The discovery that mammalian cells have the ability to synthesize the free radical nitric oxide (NO) has stimulated an extraordinary impetus for scientific research in all the fields of biology and medicine. Since its early description as an endothelial-derived relaxing factor, NO has emerged as a fundamental signaling device regulating virtually every critical cellular function, as well as a potent mediator of cellular damage in a wide range of conditions. Recent evidence indicates that most of the cytotoxicity attributed to NO is rather due to peroxynitrite, produced from the diffusion-controlled reaction between NO and another free radical, the superoxide anion. Peroxynitrite interacts with lipids, DNA, and proteins via direct oxidative reactions or via indirect, radical-mediated mechanisms. These reactions trigger cellular responses ranging from subtle modulations of cell signaling to overwhelming oxidative injury, committing cells to necrosis or apoptosis. In vivo, peroxynitrite generation represents a crucial pathogenic mechanism in conditions such as stroke, myocardial infarction, chronic heart failure, diabetes, circulatory shock, chronic inflammatory diseases, cancer, and neurodegenerative disorders. Hence, novel pharmacological strategies aimed at removing peroxynitrite might represent powerful therapeutic tools in the future. Evidence supporting these novel roles of NO and peroxynitrite is presented in detail in this review.

5,514 citations

Journal ArticleDOI
TL;DR: PDT is being tested in the clinic for use in oncology — to treat cancers of the head and neck, brain, lung, pancreas, intraperitoneal cavity, breast, prostate and skin.
Abstract: The therapeutic properties of light have been known for thousands of years, but it was only in the last century that photodynamic therapy (PDT) was developed. At present, PDT is being tested in the clinic for use in oncology--to treat cancers of the head and neck, brain, lung, pancreas, intraperitoneal cavity, breast, prostate and skin. How does PDT work, and how can it be used to treat cancer and other diseases?

5,041 citations

Book
01 May 1988
TL;DR: A comprehensive review of mechanisms of subcellular and tumor localization of photosensitizing agents, as well as of molecular, cellular, and tumor responses associated with photodynamic therapy, are discussed.
Abstract: Photodynamic therapy involves administration of a tumor-localizing photosensitizing agent, which may require metabolic synthesis (i.e., a prodrug), followed by activation of the agent by light of a specific wavelength. This therapy results in a sequence of photochemical and photobiologic processes that cause irreversible photodamage to tumor tissues. Results from preclinical and clinical studies conducted worldwide over a 25-year period have established photodynamic therapy as a useful treatment approach for some cancers. Since 1993, regulatory approval for photodynamic therapy involving use of a partially purified, commercially available hematoporphyrin derivative compound (Photofrin) in patients with early and advanced stage cancer of the lung, digestive tract, and genitourinary tract has been obtained in Canada, The Netherlands, France, Germany, Japan, and the United States. We have attempted to conduct and present a comprehensive review of this rapidly expanding field. Mechanisms of subcellular and tumor localization of photosensitizing agents, as well as of molecular, cellular, and tumor responses associated with photodynamic therapy, are discussed. Technical issues regarding light dosimetry are also considered.

4,580 citations