scispace - formally typeset
Open accessPosted Content

Real Masks and Fake Faces: On the Masked Face Presentation Attack Detection

Abstract: The ongoing COVID-19 pandemic has lead to massive public health issues. Face masks have become one of the most efficient ways to reduce coronavirus transmission. This makes face recognition (FR) a challenging task as several discriminative features are hidden. Moreover, face presentation attack detection (PAD) is crucial to ensure the security of FR systems. In contrast to growing numbers of masked FR studies, the impact of masked attacks on PAD has not been explored. Therefore, we present novel attacks with real masks placed on presentations and attacks with subjects wearing masks to reflect the current real-world situation. Furthermore, this study investigates the effect of masked attacks on PAD performance by using seven state-of-the-art PAD algorithms under intra- and cross-database scenarios. We also evaluate the vulnerability of FR systems on masked attacks. The experiments show that real masked attacks pose a serious threat to the operation and security of FR systems.

... read more

Citations
  More

6 results found


Open accessPosted Content
Naser Damer1, Fadi Boutros, Marius Süßmilch, Meiling Fang  +2 moreInstitutions (1)
Abstract: The recent COVID-19 pandemic has increased the focus on hygienic and contactless identity verification methods. However, the pandemic led to the wide use of face masks, essential to keep the pandemic under control. The effect of wearing a mask on face recognition in a collaborative environment is currently sensitive yet understudied issue. Recent reports have tackled this by evaluating the masked probe effect on the performance of automatic face recognition solutions. However, such solutions can fail in certain processes, leading to performing the verification task by a human expert. This work provides a joint evaluation and in-depth analyses of the face verification performance of human experts in comparison to state-of-the-art automatic face recognition solutions. This involves an extensive evaluation with 12 human experts and 4 automatic recognition solutions. The study concludes with a set of take-home messages on different aspects of the correlation between the verification behavior of human and machine.

... read more

6 Citations


Open accessPosted Content
Abstract: Due to the COVID-19 situation, face masks have become a main part of our daily life. Wearing mouth-and-nose protection has been made a mandate in many public places, to prevent the spread of the COVID-19 virus. However, face masks affect the performance of face recognition, since a large area of the face is covered. The effect of wearing a face mask on the different components of the face recognition system in a collaborative environment is a problem that is still to be fully studied. This work studies, for the first time, the effect of wearing a face mask on face image quality by utilising state-of-the-art face image quality assessment methods of different natures. This aims at providing better understanding on the effect of face masks on the operation of face recognition as a whole system. In addition, we further studied the effect of simulated masks on face image utility in comparison to real face masks. We discuss the correlation between the mask effect on face image quality and that on the face verification performance by automatic systems and human experts, indicating a consistent trend between both factors. The evaluation is conducted on the database containing (1) no-masked faces, (2) real face masks, and (3) simulated face masks, by synthetically generating digital facial masks on no-masked faces according to the NIST protocols [1, 23]. Finally, a visual interpretation of the face areas contributing to the quality score of a selected set of quality assessment methods is provided to give a deeper insight into the difference of network decisions in masked and non-masked faces, among other variations.

... read more

3 Citations


Open accessProceedings ArticleDOI: 10.1109/IJCB52358.2021.9484337
Fadi Boutros1, Naser Damer1, Jan Niklas Kolf1, Kiran B. Raja2  +30 moreInstitutions (10)
Abstract: This paper presents a summary of the Masked Face Recognition Competitions (MFR) held within the 2021 International Joint Conference on Biometrics (IJCB 2021). The competition attracted a total of 10 participating teams with valid submissions. The affiliations of these teams are diverse and associated with academia and industry in nine different countries. These teams successfully submitted 18 valid solutions. The competition is designed to motivate solutions aiming at enhancing the face recognition accuracy of masked faces. Moreover, the competition considered the deployability of the proposed solutions by taking the compactness of the face recognition models into account. A private dataset representing a collaborative, multisession, real masked, capture scenario is used to evaluate the submitted solutions. In comparison to one of the topperforming academic face recognition solutions, 10 out of the 18 submitted solutions did score higher masked face verification accuracy.

... read more

2 Citations


Open accessProceedings ArticleDOI: 10.1109/BIOSIG52210.2021.9548320
27 Sep 2021-
Abstract: The recent Covid-19 pandemic and the fact that wearing masks in public is now mandatory in several countries, created challenges in the use of face recognition systems (FRS). In this work, we address the challenge of masked face recognition (MFR) and focus on evaluating the verification performance in FRS when verifying masked vs unmasked faces compared to verifying only unmasked faces. We propose a methodology that combines the traditional triplet loss and the mean squared error (MSE) intending to improve the robustness of an MFR system in the masked-unmasked comparison mode. The results obtained by our proposed method show improvements in a detailed step-wise ablation study. The conducted study showed significant performance gains induced by our proposed training paradigm and modified triplet loss on two evaluation databases.

... read more

2 Citations


Open accessPosted Content
Fadi Boutros1, Naser Damer, Jan Niklas Kolf, Kiran B. Raja  +31 moreInstitutions (1)
Abstract: This paper presents a summary of the Masked Face Recognition Competitions (MFR) held within the 2021 International Joint Conference on Biometrics (IJCB 2021). The competition attracted a total of 10 participating teams with valid submissions. The affiliations of these teams are diverse and associated with academia and industry in nine different countries. These teams successfully submitted 18 valid solutions. The competition is designed to motivate solutions aiming at enhancing the face recognition accuracy of masked faces. Moreover, the competition considered the deployability of the proposed solutions by taking the compactness of the face recognition models into account. A private dataset representing a collaborative, multi-session, real masked, capture scenario is used to evaluate the submitted solutions. In comparison to one of the top-performing academic face recognition solutions, 10 out of the 18 submitted solutions did score higher masked face verification accuracy.

... read more


References
  More

36 results found


Open accessProceedings ArticleDOI: 10.1109/CVPR.2016.90
Kaiming He1, Xiangyu Zhang1, Shaoqing Ren1, Jian Sun1Institutions (1)
27 Jun 2016-
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

... read more

Topics: Deep learning (53%), Residual (53%), Convolutional neural network (53%) ... show more

93,356 Citations


Open accessProceedings Article
Karen Simonyan1, Andrew Zisserman1Institutions (1)
01 Jan 2015-
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

... read more

49,857 Citations


Open accessProceedings ArticleDOI: 10.1109/CVPR.2017.243
21 Jul 2017-
Abstract: Recent work has shown that convolutional networks can be substantially deeper, more accurate, and efficient to train if they contain shorter connections between layers close to the input and those close to the output. In this paper, we embrace this observation and introduce the Dense Convolutional Network (DenseNet), which connects each layer to every other layer in a feed-forward fashion. Whereas traditional convolutional networks with L layers have L connections—one between each layer and its subsequent layer—our network has L(L+1)/2 direct connections. For each layer, the feature-maps of all preceding layers are used as inputs, and its own feature-maps are used as inputs into all subsequent layers. DenseNets have several compelling advantages: they alleviate the vanishing-gradient problem, strengthen feature propagation, encourage feature reuse, and substantially reduce the number of parameters. We evaluate our proposed architecture on four highly competitive object recognition benchmark tasks (CIFAR-10, CIFAR-100, SVHN, and ImageNet). DenseNets obtain significant improvements over the state-of-the-art on most of them, whilst requiring less memory and computation to achieve high performance. Code and pre-trained models are available at https://github.com/liuzhuang13/DenseNet.

... read more

15,769 Citations


Journal ArticleDOI: 10.1109/TPAMI.2002.1017623
Abstract: Presents a theoretically very simple, yet efficient, multiresolution approach to gray-scale and rotation invariant texture classification based on local binary patterns and nonparametric discrimination of sample and prototype distributions. The method is based on recognizing that certain local binary patterns, termed "uniform," are fundamental properties of local image texture and their occurrence histogram is proven to be a very powerful texture feature. We derive a generalized gray-scale and rotation invariant operator presentation that allows for detecting the "uniform" patterns for any quantization of the angular space and for any spatial resolution and presents a method for combining multiple operators for multiresolution analysis. The proposed approach is very robust in terms of gray-scale variations since the operator is, by definition, invariant against any monotonic transformation of the gray scale. Another advantage is computational simplicity as the operator can be realized with a few operations in a small neighborhood and a lookup table. Experimental results demonstrate that good discrimination can be achieved with the occurrence statistics of simple rotation invariant local binary patterns.

... read more

Topics: Local binary patterns (61%), Binary pattern (59%), Image texture (58%) ... show more

13,021 Citations


Open accessProceedings ArticleDOI: 10.1109/CVPR.2016.308
27 Jun 2016-
Abstract: Convolutional networks are at the core of most state of-the-art computer vision solutions for a wide variety of tasks. Since 2014 very deep convolutional networks started to become mainstream, yielding substantial gains in various benchmarks. Although increased model size and computational cost tend to translate to immediate quality gains for most tasks (as long as enough labeled data is provided for training), computational efficiency and low parameter count are still enabling factors for various use cases such as mobile vision and big-data scenarios. Here we are exploring ways to scale up networks in ways that aim at utilizing the added computation as efficiently as possible by suitably factorized convolutions and aggressive regularization. We benchmark our methods on the ILSVRC 2012 classification challenge validation set demonstrate substantial gains over the state of the art: 21:2% top-1 and 5:6% top-5 error for single frame evaluation using a network with a computational cost of 5 billion multiply-adds per inference and with using less than 25 million parameters. With an ensemble of 4 models and multi-crop evaluation, we report 3:5% top-5 error and 17:3% top-1 error on the validation set and 3:6% top-5 error on the official test set.

... read more

Topics: Test set (51%)

12,684 Citations


Performance
Metrics
No. of citations received by the Paper in previous years
YearCitations
20216