scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Realizing an All‐Round Hydrogel Electrolyte toward Environmentally Adaptive Dendrite‐Free Aqueous Zn–MnO 2 Batteries

TL;DR: In this article, a facile and cost-effective method is developed to construct an all-round hydrogel electrolyte by using cotton as the raw material, tetraethyl orthosilicate as the crosslinker, and glycerol as the antifreezing agent.
Abstract: Flexible energy storage devices are at the forefront of next-generation power supplies, one of the most important components of which is the gel electrolyte. However, shortcomings exist, more or less, for all the currently developed hydrogel electrolytes. Herein, a facile and cost-effective method is developed to construct an all-round hydrogel electrolyte by using cotton as the raw material, tetraethyl orthosilicate as the crosslinker, and glycerol as the antifreezing agent. The obtained hydrogel electrolyte has high ionic conductivity, excellent mechanical properties (e.g., high tensile strength and elasticity), ultralow freezing point, good self-healing ability, high adhesion, and good heat-resistance ability. Remarkably, this hydrogel electrolyte can provide a record-breaking high ionic conductivity of 19.4 mS cm-1 at -40 °C compared with previously reported aqueous electrolytes for zinc-ion batteries. In addition, this hydrogel electrolyte can significantly inhibit zinc dendritic growth and parasitic side reactions from -40 to 60 °C. With this hydrogel electrolyte, a flexible quasi-solid-state Zn-MnO2 battery is assembled, which shows remarkable energy densities from -40 to 60 °C. The battery also exhibits outstanding cycling durability and has high endurance under various harsh conditions. This work opens new opportunities for the development of hydrogel electrolytes.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper , high safety and low cost aqueous zinc-ion batteries (ZIBs) are presented for grid-scale energy storage, whereas the corrosion, hydrogen evolution reaction and dendrites growth of Zn anodes plague their...
Abstract: High‐safety and low‐cost aqueous zinc‐ion batteries (ZIBs) are an exceptionally compelling technology for grid‐scale energy storage, whereas the corrosion, hydrogen evolution reaction and dendrites growth of Zn anodes plague their...

171 citations

Journal ArticleDOI
TL;DR: In this paper, a cotton-derived cellulose film was used as the separator for aqueous zinc-ion batteries (Zn-MnO2), which can effectively inhibit zinc dendrites and harmful side reactions.

138 citations

Journal ArticleDOI
TL;DR: In this paper , a comprehensive overview of existing Zn anode issues and the corresponding strategies, frontiers, and development trends is proposed to deeply comprehend the essence and inner connection of degradation mechanism and performance.
Abstract: The rapid advance of mild aqueous zinc-ion batteries (ZIBs) is driving the development of the energy storage system market. But the thorny issues of Zn anodes, mainly including dendrite growth, hydrogen evolution, and corrosion, severely reduce the performance of ZIBs. To commercialize ZIBs, researchers must overcome formidable challenges. Research about mild aqueous ZIBs is still developing. Various technical and scientific obstacles to designing Zn anodes with high stripping efficiency and long cycling life have not been resolved. Moreover, the performance of Zn anodes is a complex scientific issue determined by various parameters, most of which are often ignored, failing to achieve the maximum performance of the cell. This review proposes a comprehensive overview of existing Zn anode issues and the corresponding strategies, frontiers, and development trends to deeply comprehend the essence and inner connection of degradation mechanism and performance. First, the formation mechanism of dendrite growth, hydrogen evolution, corrosion, and their influence on the anode are analyzed. Furthermore, various strategies for constructing stable Zn anodes are summarized and discussed in detail from multiple perspectives. These strategies are mainly divided into interface modification, structural anode, alloying anode, intercalation anode, liquid electrolyte, non-liquid electrolyte, separator design, and other strategies. Finally, research directions and prospects are put forward for Zn anodes. This contribution highlights the latest developments and provides new insights into the advanced Zn anode for future research.

114 citations

Journal ArticleDOI
TL;DR: In this article , a highly flexible polysaccharide hydrogel is realized in situ and is regulated in zinc ion batteries through the Hofmeister effect with low-concentration Zn(ClO4)2 salts to satisfy the abovementioned requirements.
Abstract: The new‐generation flexible aqueous zinc‐ion batteries require enhanced mechanical properties and ionic conductivities at low temperature for practical applications. This fundamentally means that it is desired that the hydrogel electrolyte possesses antifreezing merits to resist flexibility loss and performance decrease at subzero temperatures. Herein, a highly flexible polysaccharide hydrogel is realized in situ and is regulated in zinc‐ion batteries through the Hofmeister effect with low‐concentration Zn(ClO4)2 salts to satisfy the abovementioned requirements. The chaotropic ClO4− anions, water, and polymer chains can form ternary and weak hydrogen bonding (HB), which enables the polymer chains to have improved mechanical properties, breaks the HB of water to remarkably decrease the electrolyte freezing point, and reduces the amounts of free water for effective side reactions and dendrite inhibition. Consequently, even at −30 °C, the Zn(ClO4)2 in situ optimized hydrogel electrolyte features a high ionic conductivity of 7.8 mS cm−1 and excellent flexibility, which enables a Zn/polyaniline (PANI) battery with a reversible capacity of 70 mA h g−1 under 5 A g−1 for 2500 cycles, and renderd the flexible full battery with excellent cycling performances under different bending angles. This work provides a new pathway for designing high‐performance antifreezing flexible batteries via the Hofmeister effect.

99 citations

Journal ArticleDOI
15 Sep 2021-Small
TL;DR: In this paper, the authors demonstrated that dimethyl sulfoxide (DMSO) is an effective additive in ZnSO4 electrolyte for side reactions and dendrites suppression by regulating the Zn-ion solvation structure and inducing Zn2+ to form the more electrochemical stable (002) basal plane.
Abstract: Aqueous Zn-ion batteries own great potential on next generation wearable batteries due to the high safety and low cost. However, the uncontrollable dendrites growth and the negligible subzero temperature performance impede the batteries practical applications. Herein, it is demonstrated that dimethyl sulfoxide (DMSO) is an effective additive in ZnSO4 electrolyte for side reactions and dendrites suppression by regulating the Zn-ion solvation structure and inducing the Zn2+ to form the more electrochemical stable (002) basal plane, via the higher absorption energy of DMSO with Zn2+ and (002) plane. Moreover, the stable reconstructed hydrogen bonds between DMSO and H2 O dramatically lower the freezing point of the electrolyte, which significantly increases the ionic conductivity and cycling performance of the aqueous batteries at subzero temperatures. As a consequence, the symmetrical Zn/Zn cell can be kept stable for more than 2100 h at 20 °C and 1200 h at -20 °C without dendrite and by-products formation. The Zn/MnO2 batteries can perform steadily for more than 3000 cycles at 20 °C and 300 cycles at -20 °C. This work provides a facile and feasible strategy on designing high performance and dendrite free aqueous Zn-ion batteries for various temperatures.

99 citations

References
More filters
Journal ArticleDOI
TL;DR: This work demonstrates microsupercapacitors with powers per volume that are comparable to electrolytic capacitors, capacitances that are four orders of magnitude higher, and energies per volume higher than conventional supercapacitor.
Abstract: Electrochemical capacitors, also called supercapacitors, store energy in two closely spaced layers with opposing charges, and are used to power hybrid electric vehicles, portable electronic equipment and other devices¹. By offering fast charging and discharging rates, and the ability to sustain millions of ²⁻⁵, electrochemical capacitors bridge the gap between batteries, which offer high energy densities but are slow, and conventional electrolytic capacitors, which are fast but have low energy densities. Here, we demonstrate microsupercapacitors with powers per volume that are comparable to electrolytic capacitors, capacitances that are four orders of magnitude higher, and energies per volume that are an order of magnitude higher. We also measured discharge rates of up to 200 V s⁻¹, which is three orders of magnitude higher than conventional supercapacitors. The microsupercapacitors are produced by the electrophoretic deposition of a several micrometre-thick layer of nanostructured carbon onions⁶‚⁷ with diameters of 6-7 nm. Integration of these nanoparticles in a microdevice with a high surface-to-volume ratio, without the use of organic binders and polymer separators, improves performance because of the ease with which ions can access the active material. Increasing the energy density and discharge rates of supercapacitors will enable them to compete with batteries and conventional electrolytic capacitors in a number of applications.

2,469 citations

Journal ArticleDOI
TL;DR: In this paper, the authors demonstrate a highly reversible zinc/manganese oxide system in which optimal mild aqueous ZnSO4-based solution is used as the electrolyte, and nanofibres of a manganese oxide phase, α-MnO2, are used as a cathode.
Abstract: Rechargeable aqueous batteries such as alkaline zinc/manganese oxide batteries are highly desirable for large-scale energy storage owing to their low cost and high safety; however, cycling stability is a major issue for their applications. Here we demonstrate a highly reversible zinc/manganese oxide system in which optimal mild aqueous ZnSO4-based solution is used as the electrolyte, and nanofibres of a manganese oxide phase, α-MnO2, are used as the cathode. We show that a chemical conversion reaction mechanism between α-MnO2 and H+ is mainly responsible for the good performance of the system. This includes an operating voltage of 1.44 V, a capacity of 285 mAh g−1 (MnO2), and capacity retention of 92% over 5,000 cycles. The Zn metal anode also shows high stability. This finding opens new opportunities for the development of low-cost, high-performance rechargeable aqueous batteries. Rechargeable aqueous batteries are attractive owing to their relatively low cost and safety. Here the authors report an aqueous zinc/manganese oxide battery that operates via a conversion reaction mechanism and exhibits a long-term cycling stability.

1,965 citations

Journal ArticleDOI
TL;DR: In this article, a vanadium oxide bronze was used as the positive electrode for a Zn cell with reversible intercalation of Zn ions in a layered Zn0.25V2O5⋅nH2O-based positive electrode.
Abstract: Although non-aqueous Li-ion batteries possess significantly higher energy density than their aqueous counterparts, the latter can be more feasible for grid-scale applications when cost, safety and cycle life are taken into consideration. Moreover, aqueous Zn-ion batteries have an energy storage advantage over alkali-based batteries as they can employ Zn metal as the negative electrode, dramatically increasing energy density. However, their development is plagued by a limited choice of positive electrodes, which often show poor rate capability and inadequate cycle life. Here we report a vanadium oxide bronze pillared by interlayer Zn2+ ions and water (Zn0.25V2O5⋅nH2O), as the positive electrode for a Zn cell. A reversible Zn2+ ion (de)intercalation storage process at fast rates, with more than one Zn2+ per formula unit (a capacity up to 300 mAh g−1), is characterized. The Zn cell offers an energy density of ∼450 Wh l−1 and exhibits a capacity retention of more than 80% over 1,000 cycles, with no dendrite formation at the Zn electrode. High-performing positive electrode materials are crucial for the development of aqueous Zn-ion batteries. Here the authors report a battery based on reversible intercalation of Zn ions in a layered Zn0.25V2O5⋅nH2O-based positive electrode, which exhibits high-capacity and long-term cycling stability.

1,948 citations

Journal ArticleDOI
TL;DR: Electrochemical and structural analysis identify that the MnO2 cathode experience a consequent H+ and Zn2+ insertion/extraction process with high reversibility and cycling stability, which is the first report on rechargeable aqueous batteries with a consequents ion-insertion reaction mechanism.
Abstract: Rechargeable aqueous Zn/MnO2 battery chemistry in a neutral or mildly acidic electrolyte has attracted extensive attention recently because all the components (anode, cathode, and electrolyte) in a Zn/MnO2 battery are safe, abundant, and sustainable. However, the reaction mechanism of the MnO2 cathode remains a topic of discussion. Herein, we design a highly reversible aqueous Zn/MnO2 battery where the binder-free MnO2 cathode was fabricated by in situ electrodeposition of MnO2 on carbon fiber paper in mild acidic ZnSO4+MnSO4 electrolyte. Electrochemical and structural analysis identify that the MnO2 cathode experience a consequent H+ and Zn2+ insertion/extraction process with high reversibility and cycling stability. To our best knowledge, it is the first report on rechargeable aqueous batteries with a consequent ion-insertion reaction mechanism.

1,209 citations

Journal ArticleDOI
TL;DR: Structurally reinforced polyaniline-intercalated MnO2 nanolayers that boost performance by eliminating phase transformation are reported, which sheds light on the design of advanced cathodes for aqueous zinc-ion batteries.
Abstract: Rechargeable zinc-manganese dioxide batteries that use mild aqueous electrolytes are attracting extensive attention due to high energy density and environmental friendliness. Unfortunately, manganese dioxide suffers from substantial phase changes (e.g., from initial α-, β-, or γ-phase to a layered structure and subsequent structural collapse) during cycling, leading to very poor stability at high charge/discharge depth. Herein, cyclability is improved by the design of a polyaniline-intercalated layered manganese dioxide, in which the polymer-strengthened layered structure and nanoscale size of manganese dioxide serves to eliminate phase changes and facilitate charge storage. Accordingly, an unprecedented stability of 200 cycles with at a high capacity of 280 mA h g-1 (i.e., 90% utilization of the theoretical capacity of manganese dioxide) is achieved, as well as a long-term stability of 5000 cycles at a utilization of 40%. The encouraging performance sheds light on the design of advanced cathodes for aqueous zinc-ion batteries.

906 citations