scispace - formally typeset
Search or ask a question
Proceedings ArticleDOI

Receiver spatial-temporal signal processing for broadband wireless systems

18 Sep 2000-Vol. 1, pp 676-682
TL;DR: The elements of linear and nonlinear space-time processing are introduced and their capabilities for combating interference and multipath are outlined.
Abstract: In this overview, we review the basic reception techniques of adaptive spatial and temporal processing, which have been shown to yield substantial improvements in capacity and performance of wireless systems. After a review of appropriate transmission channel models, we introduce the elements of linear and nonlinear space-time processing and outline their capabilities for combating interference and multipath. We then describe some current applications and discuss adaptation issues.
Citations
More filters
01 Jan 1994
TL;DR: In this paper, an adaptive linear and decision feedback receiver structure for coherent demodulation in asynchronous CDMA systems is proposed. But the adaptive receiver has no knowledge of the signature waveforms and timing of other users.
Abstract: Adaptive linear and decision feedback receiver structures for coherent demodulation in asynchronous code division multiple access (CDMA) systems are considered. It is assumed that the adaptive receiver has no knowledge of the signature waveforms and timing of other users. The receiver is trained by a known training sequence prior to data transmission and continuously adjusted by an adaptive algorithm during data transmission. The proposed linear receiver is as simple as a standard single-user detector receiver consisting of a matched filter with constant coefficients, but achieves essential advantages with respect to timing recovery, multiple access interference elimination, near/far effect, narrowband and frequency-selective fading interference suppression, and user privacy

411 citations

Journal ArticleDOI
TL;DR: This book is very referred for you because it gives not only the experience but also lesson, that's not about who are reading this array signal processing book but about this book that will give wellness for all people from many societies.
Abstract: Where you can find the array signal processing easily? Is it in the book store? On-line book store? are you sure? Keep in mind that you will find the book in this site. This book is very referred for you because it gives not only the experience but also lesson. The lessons are very valuable to serve for you, that's not about who are reading this array signal processing book. It is about this book that will give wellness for all people from many societies.

372 citations

Book ChapterDOI
D. Tujkovic1
01 Jan 2005
TL;DR: This thesis proposes parallel concatenated space-time turbo coded modulation (STTuCM), among the earliest multiple-input multiple-output (MIMO) coded modulation designs built on the intersection of ST coding and turbo coding.
Abstract: High computational complexity constrains truly exhaustive computer searches for good space-time (ST) coded modulations mostly to low constraint length space-time trellis codes (STTrCs). Such codes are primarily devised to achieve maximum transmit diversity gain. Due to their low memory order, optimization based on the design criterion of secondary importance typically results in rather modest coding gains. As another disadvantage of limited freedom, the different low memory order STTrCs are almost exclusively constructed for either slow or fast fading channels. Therefore in practical applications characterized by extremely variable Doppler frequencies, the codes typically fail to demonstrate desired robustness. On the other hand, the main drawback of eventually increased constraint lengths is the prohibitively large decoding complexity, which may increase exponentially if optimal maximum-likelihood decoding (MLD) is applied at the receiver. Therefore, robust ST coded modulation schemes with large equivalent memory orders structured as to allow sub-optimal, low complexity, iterative decoding are needed. To address the aforementioned issues, this thesis proposes parallel concatenated space-time turbo coded modulation (STTuCM). It is among the earliest multiple-input multiple-output (MIMO) coded modulation designs built on the intersection of ST coding and turbo coding. The systematic procedure for building an equivalent recursive STTrC (Rec-STTrC) based on the trellis diagram of an arbitrary non-recursive STTrC is first introduced. The parallel concatenation of punctured constituent RecSTTrCs designed upon the non-recursive Tarokh et al. STTrCs (Tarokh-STTrCs) is evaluated under different narrow-band frequency flat block fading channels. Combined with novel transceiver designs, the applications for future wide-band code division multiple access (WCDMA) and orthogonal frequency division multiplexing (OFDM) based broadband radio communication systems are considered. The distance spectrum (DS) interpretation of the STTuCM and union bound (UB) performance analysis over slow and fast fading channels reveal the importance of multiplicities in the ST coding design. The modified design criteria for space-time codes (STCs) are introduced that capture the joint effects of error coefficients and multiplicities in the two dimensional DS of a code. Applied to STTuCM, such DS optimization resulted in a new set of constituent codes (CCs) for improved and robust performance over both slow and fast fading channels. A recursive systematic form with a primitive equivalent feedback polynomial is assumed for CCs to assure good convergence in iterative decoding. To justify such assumptions, the iterative decoding convergence analysis based on the Gaussian approximation of the extrinsic information is performed. The DS interpretation, introduced with respect to an arbitrary defined effective Hamming distance (EHD) and effective product distance (EPD), is applicable to the general class of geometrically non-uniform (GNU) CCs. With no constrains on the implemented information interleaving, the STTuCM constructed from newly designed CCs achieves full spatial diversity over quasi-static fading channels, the condition commonly identified as the most restrictive for robust performance over a variety of Doppler spreads. Finally, the impact of bit-wise and symbol-wise information interleaving on the performance of STTuCM is studied.

12 citations


Cites background from "Receiver spatial-temporal signal pr..."

  • ...For a comprehensive overview of the ST processing area see [5, 20, 21, 22, 23, 24, 25, 26, 27, 11, 28, 29, 30, 31]....

    [...]

Journal ArticleDOI
TL;DR: This paper deals with the processing techniques which are known as reconfigurable antennas: these methods are foreseen to be a booster for the future high rate wireless communications, both for the benefits in terms of performance and for the capacity gains.
Abstract: This paper deals with the processing techniques which are known as reconfigurable antennas: these methods are foreseen to be a booster for the future high rate wireless communications, both for the benefits in terms of performance and for the capacity gains. In particular, adaptive digital signal processing can provide improved performance for the desired signal in terms of error probability or signal-to-noise ratio while the bandwidth efficiency can be increased linearly with the number of transmitting and receiving antennas. In this article, the main antenna processing techniques are reviewed and described, aiming at highlighting performance/complexity trade-offs and how they could be implemented in the future systems. The coexistence of all these different technologies in a wireless environment requires high efficiency and flexibility of the transceiver. Future transceiver implementations which are based on the Software Defined Radio technology are also reviewed and described.

9 citations

01 Jan 2007
TL;DR: An optimum linear receiver for multiple channel digital transmission systems is developed for the minimum P e and for the zero-forcing criterion and an algorithm is given to calculate the tap settings of this multiple tapped delay line.
Abstract: An optimum linear receiver for multiple channel digital transmission systems is developed for the minimum P and for the zero-forcing criterion A multidimensional Nyquist criterion is defined together with a theorem on the optimality of a finite length multiple tapped delay line Furthermore an algorithm is given to calculate the tap settings of this multiple tapped delay line This algorithm simplifies in those cases where the noise is so small that it can be neglected Finally as an example the transmission of binary data over the cable, consisting of four identical wires, symmetrically situated inside a cylindrical shield, is considered

5 citations

References
More filters
Book
01 Jan 1986
TL;DR: In this paper, the authors propose a recursive least square adaptive filter (RLF) based on the Kalman filter, which is used as the unifying base for RLS Filters.
Abstract: Background and Overview. 1. Stochastic Processes and Models. 2. Wiener Filters. 3. Linear Prediction. 4. Method of Steepest Descent. 5. Least-Mean-Square Adaptive Filters. 6. Normalized Least-Mean-Square Adaptive Filters. 7. Transform-Domain and Sub-Band Adaptive Filters. 8. Method of Least Squares. 9. Recursive Least-Square Adaptive Filters. 10. Kalman Filters as the Unifying Bases for RLS Filters. 11. Square-Root Adaptive Filters. 12. Order-Recursive Adaptive Filters. 13. Finite-Precision Effects. 14. Tracking of Time-Varying Systems. 15. Adaptive Filters Using Infinite-Duration Impulse Response Structures. 16. Blind Deconvolution. 17. Back-Propagation Learning. Epilogue. Appendix A. Complex Variables. Appendix B. Differentiation with Respect to a Vector. Appendix C. Method of Lagrange Multipliers. Appendix D. Estimation Theory. Appendix E. Eigenanalysis. Appendix F. Rotations and Reflections. Appendix G. Complex Wishart Distribution. Glossary. Abbreviations. Principal Symbols. Bibliography. Index.

16,062 citations

Book
01 Feb 1975
TL;DR: An in-depth and practical guide, Microwave Mobile Communications will provide you with a solid understanding of the microwave propagation techniques essential to the design of effective cellular systems.
Abstract: From the Publisher: IEEE Press is pleased to bring back into print this definitive text and reference covering all aspects of microwave mobile systems design. Encompassing ten years of advanced research in the field, this invaluable resource reviews basic microwave theory, explains how cellular systems work, and presents useful techniques for effective systems development. The return of this classic volume should be welcomed by all those seeking the original authoritative and complete source of information on this emerging technology. An in-depth and practical guide, Microwave Mobile Communications will provide you with a solid understanding of the microwave propagation techniques essential to the design of effective cellular systems.

9,064 citations

Journal ArticleDOI
Gerard J. Foschini1
TL;DR: This paper addresses digital communication in a Rayleigh fading environment when the channel characteristic is unknown at the transmitter but is known (tracked) at the receiver with the aim of leveraging the already highly developed 1-D codec technology.
Abstract: This paper addresses digital communication in a Rayleigh fading environment when the channel characteristic is unknown at the transmitter but is known (tracked) at the receiver. Inventing a codec architecture that can realize a significant portion of the great capacity promised by information theory is essential to a standout long-term position in highly competitive arenas like fixed and indoor wireless. Use (n T , n R ) to express the number of antenna elements at the transmitter and receiver. An (n, n) analysis shows that despite the n received waves interfering randomly, capacity grows linearly with n and is enormous. With n = 8 at 1% outage and 21-dB average SNR at each receiving element, 42 b/s/Hz is achieved. The capacity is more than 40 times that of a (1, 1) system at the same total radiated transmitter power and bandwidth. Moreover, in some applications, n could be much larger than 8. In striving for significant fractions of such huge capacities, the question arises: Can one construct an (n, n) system whose capacity scales linearly with n, using as building blocks n separately coded one-dimensional (1-D) subsystems of equal capacity? With the aim of leveraging the already highly developed 1-D codec technology, this paper reports just such an invention. In this new architecture, signals are layered in space and time as suggested by a tight capacity bound.

6,812 citations

Book
01 Aug 1998
TL;DR: This self-contained and comprehensive book sets out the basic details of multiuser detection, starting with simple examples and progressing to state-of-the-art applications.
Abstract: From the Publisher: The development of multiuser detection techniques is one of the most important recent advances in communications technology. This self-contained and comprehensive book sets out the basic details of multiuser detection, starting with simple examples and progressing to state-of-the-art applications. The only prerequisites assumed are undergraduate-level probability, linear algebra, and digital communications. The book contains over 240 exercises and will be a suitable textbook for electrical engineering students. It will also be an ideal self-study guide for practicing engineers, as well as a valuable reference volume for researchers in communications, information theory, and signal processing.

5,048 citations

Proceedings ArticleDOI
29 Sep 1998
TL;DR: This paper describes a wireless communication architecture known as vertical BLAST (Bell Laboratories Layered Space-Time) or V-BLAST, which has been implemented in real-time in the laboratory and demonstrated spectral efficiencies of 20-40 bps/Hz in an indoor propagation environment at realistic SNRs and error rates.
Abstract: Information theory research has shown that the rich-scattering wireless channel is capable of enormous theoretical capacities if the multipath is properly exploited In this paper, we describe a wireless communication architecture known as vertical BLAST (Bell Laboratories Layered Space-Time) or V-BLAST, which has been implemented in real-time in the laboratory Using our laboratory prototype, we have demonstrated spectral efficiencies of 20-40 bps/Hz in an indoor propagation environment at realistic SNRs and error rates To the best of our knowledge, wireless spectral efficiencies of this magnitude are unprecedented and are furthermore unattainable using traditional techniques

3,925 citations