Recent advances in carbon based nanosystems for cancer theranostics.
TL;DR: This review deals with four different types of carbon allotrope including carbon nanotubes, graphene, fullerenes and nanodiamonds and summarizes the results of recent studies that are likely to have implications in cancer theranostics.
Abstract: One of the major challenges in our contemporary society is to facilitate healthy life for all human beings. In this context, cancer has become one of the most deadly diseases around the world, and despite many advances in theranostics techniques the treatment of cancer still remains an important problem. With recent advances made in the field of nano-biotechnology, carbon-based nanostructured materials have drawn special attention because of their unique physicochemical properties, giving rise to great potential for the diagnosis and therapy of cancer. This review deals with four different types of carbon allotrope including carbon nanotubes, graphene, fullerenes and nanodiamonds and summarizes the results of recent studies that are likely to have implications in cancer theranostics. We discuss the applications of these carbon allotropes for cancer imaging and drug delivery, hyperthermia, photodynamic therapy and acoustic wave assisted theranostics. We focus on the results of different studies conducted on functionalized/conjugated carbon nanotubes, graphene, fullerenes and nanodiamond based nanostructured materials reported in the literature in the current decade. The emphasis has been placed on the synthesis strategies, structural design, properties and possible mechanisms that are perhaps responsible for their improved theranostic characteristics. Finally, we discuss the critical issues that may accelerate the development of carbon-based nanostructured materials for application in cancer theranostics.
Citations
More filters
TL;DR: It is believed that PTT and PAI having noteworthy features would become promising next-generation non-invasive cancer theranostic techniques and improve the ability to combat cancers.
Abstract: The nonradiative conversion of light energy into heat (photothermal therapy, PTT) or sound energy (photoacoustic imaging, PAI) has been intensively investigated for the treatment and diagnosis of cancer, respectively. By taking advantage of nanocarriers, both imaging and therapeutic functions together with enhanced tumour accumulation have been thoroughly studied to improve the pre-clinical efficiency of PAI and PTT. In this review, we first summarize the development of inorganic and organic nano photothermal transduction agents (PTAs) and strategies for improving the PTT outcomes, including applying appropriate laser dosage, guiding the treatment via imaging techniques, developing PTAs with absorption in the second NIR window, increasing photothermal conversion efficiency (PCE), and also increasing the accumulation of PTAs in tumours. Second, we introduce the advantages of combining PTT with other therapies in cancer treatment. Third, the emerging applications of PAI in cancer-related research are exemplified. Finally, the perspectives and challenges of PTT and PAI for combating cancer, especially regarding their clinical translation, are discussed. We believe that PTT and PAI having noteworthy features would become promising next-generation non-invasive cancer theranostic techniques and improve our ability to combat cancers.
1,721 citations
TL;DR: The recent advances of smart graphene platforms for combined therapy applications are presented, starting with the principle for the design of graphene‐based smart platforms in combined therapy Applications and current challenges and future prospects regarding this promising field are discussed.
Abstract: The extensive research of graphene and its derivatives in biomedical applications during the past few years has witnessed its significance in the field of nanomedicine. Starting from simple drug delivery systems, the application of graphene and its derivatives has been extended to a versatile platform of multiple therapeutic modalities, including photothermal therapy, photodynamic therapy, magnetic hyperthermia therapy, and sonodynamic therapy. In addition to monotherapy, graphene-based materials are widely applied in combined therapies for enhanced anticancer activity and reduced side effects. In particular, graphene-based materials are often designed and fabricated as "smart" platforms for stimuli-responsive nanocarriers, whose therapeutic effects can be activated by the tumor microenvironment, such as acidic pH and elevated glutathione (termed as "endogenous stimuli"), or light, magnetic, or ultrasonic stimuli (termed as "exogenous stimuli"). Herein, the recent advances of smart graphene platforms for combined therapy applications are presented, starting with the principle for the design of graphene-based smart platforms in combined therapy applications. Next, recent advances of combined therapies contributed by graphene-based materials, including chemotherapy-based, photothermal-therapy-based, and ultrasound-therapy-based synergistic therapy, are outlined. In addition, current challenges and future prospects regarding this promising field are discussed.
209 citations
TL;DR: It is found that the continuous advances of synthesis and design of novel nanomaterials will enhance the future development of medical imaging and cancer therapy, however, more resources should be available to examine side effects and cell toxicity when using nanommaterials in humans.
Abstract: Nanomaterials, such as nanoparticles, nanorods, nanosphere, nanoshells, and nanostars, are very commonly used in biomedical imaging and cancer therapy. They make excellent drug carriers, imaging contrast agents, photothermal agents, photoacoustic agents, and radiation dose enhancers, among other applications. Recent advances in nanotechnology have led to the use of nanomaterials in many areas of functional imaging, cancer therapy, and synergistic combinational platforms. This review will systematically explore various applications of nanomaterials in biomedical imaging and cancer therapy. The medical imaging modalities include magnetic resonance imaging, computed tomography, positron emission tomography, single photon emission computerized tomography, optical imaging, ultrasound, and photoacoustic imaging. Various cancer therapeutic methods will also be included, including photothermal therapy, photodynamic therapy, chemotherapy, and immunotherapy. This review also covers theranostics, which use the same agent in diagnosis and therapy. This includes recent advances in multimodality imaging, image-guided therapy, and combination therapy. We found that the continuous advances of synthesis and design of novel nanomaterials will enhance the future development of medical imaging and cancer therapy. However, more resources should be available to examine side effects and cell toxicity when using nanomaterials in humans.
167 citations
Cites background from "Recent advances in carbon based nan..."
...Carbon-based NPs have gained considerable attention due to their unique physicochemical properties in nanotechnology [118]....
[...]
TL;DR: The most common inorganic nanomaterials, such as gold, carbon-based materials, tungsten, copper, molybdenum, and iron oxide, which have been explored for mediating a tumor-localized photothermal effect, are summarized.
Abstract: Cancer photothermal therapy (PTT) has captured the attention of researchers worldwide due to its localized and trigger-activated therapeutic effect. In this field, nanomaterials capable of converting the energy of the irradiation light into heat have been showing promising results in several pre-clinical and clinical assays. Such a therapeutic modality takes advantage of the innate capacity of nanomaterials to accumulate in the tumor tissue and their capacity to interact with NIR laser irradiation to exert a therapeutic effect. Therefore, several nanostructures composed of different materials and organizations for mediating a photothermal effect have been developed. In this review, the most common inorganic nanomaterials, such as gold, carbon-based materials, tungsten, copper, molybdenum, and iron oxide, which have been explored for mediating a tumor-localized photothermal effect, are summarized. Moreover, the physicochemical parameters of nanoparticles that influence the PTT effectiveness are discussed and the recent clinical advances involving inorganic nanomaterial-mediated cancer photothermal therapy are also presented.
166 citations
TL;DR: A critical analysis of the most recent therapeutic studies involving various NPs-mediated DDS as alternatives for the traditional treatment approaches for BC will shed light on the significance of N Ps- mediated DDS and serve as a guide to seeking for the ideal methodology for future targeted drug delivery for an efficient BC treatment.
Abstract: Breast cancer (BC) is the most common malignancy in women worldwide, and one of the deadliest after lung cancer. Currently, standard methods for cancer therapy including BC are surgery followed by chemotherapy or radiotherapy. However, both chemotherapy and radiotherapy often fail to treat BC due to the side effects that these therapies incur in normal tissues and organs. In recent years, various nanoparticles (NPs) have been discovered and synthesized to be able to selectively target tumor cells without causing any harm to the healthy cells or organs. Therefore, NPs-mediated targeted drug delivery systems (DDS) have become a promising technique to treat BC. In addition to their selectivity to target tumor cells and reduce side effects, NPs have other unique properties which make them desirable for cancer treatment such as low toxicity, good compatibility, ease of preparation, high photoluminescence (PL) for bioimaging in vivo, and high loadability of drugs due to their tunable surface functionalities. In this study, we summarize with a critical analysis of the most recent therapeutic studies involving various NPs-mediated DDS as alternatives for the traditional treatment approaches for BC. It will shed light on the significance of NPs-mediated DDS and serve as a guide to seeking for the ideal methodology for future targeted drug delivery for an efficient BC treatment.
139 citations
References
More filters
TL;DR: Monocrystalline graphitic films are found to be a two-dimensional semimetal with a tiny overlap between valence and conductance bands and they exhibit a strong ambipolar electric field effect.
Abstract: We describe monocrystalline graphitic films, which are a few atoms thick but are nonetheless stable under ambient conditions, metallic, and of remarkably high quality. The films are found to be a two-dimensional semimetal with a tiny overlap between valence and conductance bands, and they exhibit a strong ambipolar electric field effect such that electrons and holes in concentrations up to 10 13 per square centimeter and with room-temperature mobilities of ∼10,000 square centimeters per volt-second can be induced by applying gate voltage.
55,532 citations
NEC1
TL;DR: Iijima et al. as mentioned in this paper reported the preparation of a new type of finite carbon structure consisting of needle-like tubes, which were produced using an arc-discharge evaporation method similar to that used for fullerene synthesis.
Abstract: THE synthesis of molecular carbon structures in the form of C60 and other fullerenes1 has stimulated intense interest in the structures accessible to graphitic carbon sheets. Here I report the preparation of a new type of finite carbon structure consisting of needle-like tubes. Produced using an arc-discharge evaporation method similar to that used for fullerene synthesis, the needles grow at the negative end of the electrode used for the arc discharge. Electron microscopy reveals that each needle comprises coaxial tubes of graphitic sheets, ranging in number from 2 up to about 50. On each tube the carbon-atom hexagons are arranged in a helical fashion about the needle axis. The helical pitch varies from needle to needle and from tube to tube within a single needle. It appears that this helical structure may aid the growth process. The formation of these needles, ranging from a few to a few tens of nanometres in diameter, suggests that engineering of carbon structures should be possible on scales considerably greater than those relevant to the fullerenes. On 7 November 1991, Sumio Iijima announced in Nature the preparation of nanometre-size, needle-like tubes of carbon — now familiar as 'nanotubes'. Used in microelectronic circuitry and microscopy, and as a tool to test quantum mechanics and model biological systems, nanotubes seem to have unlimited potential.
39,086 citations
[...]
TL;DR: Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena can now be mimicked and tested in table-top experiments.
Abstract: Graphene is a rapidly rising star on the horizon of materials science and condensed-matter physics. This strictly two-dimensional material exhibits exceptionally high crystal and electronic quality, and, despite its short history, has already revealed a cornucopia of new physics and potential applications, which are briefly discussed here. Whereas one can be certain of the realness of applications only when commercial products appear, graphene no longer requires any further proof of its importance in terms of fundamental physics. Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena, some of which are unobservable in high-energy physics, can now be mimicked and tested in table-top experiments. More generally, graphene represents a conceptually new class of materials that are only one atom thick, and, on this basis, offers new inroads into low-dimensional physics that has never ceased to surprise and continues to provide a fertile ground for applications.
35,293 citations
TL;DR: It is reported that nanoscale carbon particles (carbon dots) upon simple surface passivation are strongly photoluminescent in both solution and the solid state.
Abstract: We report that nanoscale carbon particles (carbon dots) upon simple surface passivation are strongly photoluminescent in both solution and the solid state. The luminescence emission of the carbon dots is stable against photobleaching, and there is no blinking effect. These strongly emissive carbon dots may find applications similar to or beyond those of their widely pursued silicon counterparts.
3,817 citations
TL;DR: The rational control of the mechanical, chemical, electronic and optical properties of nanodiamonds through surface doping, interior doping and the introduction of functional groups are discussed.
Abstract: Nanodiamonds have excellent mechanical and optical properties, high surface areas and tunable surface structures. They are also non-toxic, which makes them well suited to biomedical applications. Here we review the synthesis, structure, properties, surface chemistry and phase transformations of individual nanodiamonds and clusters of nanodiamonds. In particular we discuss the rational control of the mechanical, chemical, electronic and optical properties of nanodiamonds through surface doping, interior doping and the introduction of functional groups. These little gems have a wide range of potential applications in tribology, drug delivery, bioimaging and tissue engineering, and also as protein mimics and a filler material for nanocomposites.
2,351 citations