scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Recent advances in catalytic transformation of biomass-derived 5-hydroxymethylfurfural into the innovative fuels and chemicals

TL;DR: In contrast to the nonrenewable fossil resources, biomass, the only renewable resource of organic carbon in the nature, is considered as a special kind of inexhaustible feedstocks, which can be used for the synthesis of numerous valuable products in a sustainable manner as discussed by the authors.
Abstract: In contrast to the nonrenewable fossil resources, biomass, the only renewable resource of organic carbon in the nature, is considered as a special kind of inexhaustible feedstocks, which can be used for the synthesis of numerous valuable products in a sustainable manner. Among many biomass-derived products, 5-hydroxymethylfurfural (HMF) is identified to be a crucially important versatile compound due to its marvelous structure that is composed of an aldehyde group, a hydroxyl group and a furan ring. Hence, HMF possesses a very strong chemical reactivity, and it can be further transformed into a wide variety of value-added derivatives. In recent years, the synthetic methods, physicochemical properties and commercial prospects of HMF-based conventional derivatives such as 2,5-dimethylfuran (DMF), 5-ethoxymethylfurfural (EMF), ethyl levulinate (EL), long chain alkane (LLA), levulinic acid (LA), 2,5-diformylfuran (DFF) and 2,5-furandicarboxylic acid (FDCA) have been intensively reviewed by many researchers. However, up to now, the preparation of HMF-based innovative derivatives such as 2,5-dihydroxymethylfuran (DHMF), 2,5-dihydroxymethyltetrahydrofuran (DHMTHF), 1,2,6-hexanetriol (HTO), 1,6-hexanediol (HDO), 1-hydroxyhexane-2,5-dione (HHD), 3-hydroxymethylcyclopetanone (HMCPN), furan-2,5-dimethylcarboxylate (FDMC), maleic anhydride (MA), 5-hydroxy-5-(hydroxymethyl)furan-2(5H)-one (HHMFO), 5-alkoxymethylfurfural (AMF), 5,5-oxy-(bismethylene)-2-furaldehyde (OBMF), 5-arylaminomethyl-2-furanmethanol (AAMFM), 2,5-furandiamidine dihydrochloride (FDADHC), 1-alkyl-5-hydroxy-2-(hydroxymethyl)pyridinium (AHHMP), 5,5-bis(hydroxymethyl)furoin (BHMF), 5-(dialkyloxymethyl)-2-furanmethanol (DAMFM), 5-chloromethylfurfural (CMF), 5-alkanoyloxymethylfurfural (AOOMF) and furfuryl alcohol (FFA) has not yet been comprehensively summarized. In order to fill this gap, the latest studies and advancements on the preparation of HMF-based innovative derivatives via various catalytic approaches such as hydrogenation, oxidation, etherification, amination, condensation, halogenation, esterification and decarbonylation are systematically outlined and discussed in this review. Furthermore, a few potential research trends in the future studies are also proposed to provide some useful ideas for the further preparation of HMF-based innovative derivatives in a much more green, simple, efficient and economical way.
Citations
More filters
Journal ArticleDOI
TL;DR: The conversion of biomass derived FUR and HMF through unconventional (transfer hydrogenation, photocatalytic and electrocatalytic) catalytic processes promoted by heterogeneous catalytic systems are discussed.
Abstract: Furans represent one of the most important classes of intermediates in the conversion of non-edible lignocellulosic biomass into bio-based chemicals and fuels. At present, bio-furan derivatives are generally obtained from cellulose and hemicellulose fractions of biomass via the acid-catalyzed dehydration of their relative C6-C5 sugars and then converted into a wide range of products. Furfural (FUR) and 5-hydroxymethylfurfural (HMF) are surely the most used furan-based feedstocks since their chemical structure allows the preparation of various high-value-added chemicals. Among several well-established catalytic approaches, hydrogenation and oxygenation processes have been efficiently adopted for upgrading furans; however, harsh reaction conditions are generally required. In this review, we aim to discuss the conversion of biomass derived FUR and HMF through unconventional (transfer hydrogenation, photocatalytic and electrocatalytic) catalytic processes promoted by heterogeneous catalytic systems. The reaction conditions adopted, the chemical nature and the physico-chemical properties of the most employed heterogeneous systems in enhancing the catalytic activity and in driving the selectivity to desired products are presented and compared. At the same time, the latest results in the production of FUR and HMF through novel environmental friendly processes starting from lignocellulose as well as from wastes and by-products obtained in the processing of biomass are also overviewed.

441 citations

Journal ArticleDOI
TL;DR: A review of the most recent studies on acid-catalyzed hydrolysis can be found in this paper, where the main byproducts, including levulinic acid (LA) and 5-hydroxymethylfurfural (HMF), are discussed.
Abstract: Catalytic conversion of renewable biomass to “green” chemicals and fuel additives has been extensively investigated in the past few decades. Interests on two top platform intermediates for biofuel production, i.e. levulinic acid (LA) and 5-hydroxymethylfurfural (HMF), have increased significantly. These two chemicals are generally produced from biomass through acid hydrolysis. This review summarizes the discoveries of the most recent studies on acid-catalyzed hydrolysis, including (i) biomass pretreatment, (ii) glucose production from cellulose hydrolysis, (iii) fructose formation from glucose isomerization, (iv) HMF formation from glucose/fructose dehydration and (v) LA production from HMF rehydration. Humins, the main byproducts, are also discussed in the aspect of their influence on the hydrolysis process, structure, formation mechanism, and applications.

361 citations

Journal ArticleDOI
TL;DR: In this article, the selective tailoring of these groups in 5-hydroxymethylfurfural (HMF) was described to form 2,5-dimethylfuran, 2.5-dihydromethylfurus, 2, 5-dimethylhexanediol, 1,6-hexanedol, long-chain alkanes, 3-(hydroxy-methyl)cyclopentanone, p-xylene, 2 5-diformylfuran and maleic anhydride.

207 citations

Journal ArticleDOI
TL;DR: A review comprehensively summarizes and discusses state-of-the-art advancements of the production of 2,5-dihydroxymethylfuran (DHMF) from HMF via various chemocatalytic pathways.
Abstract: In recent years, 2,5-dihydroxymethylfuran (DHMF), which can be produced by the selective hydrogenation of biomass-derived 5-hydroxymethylfurfural (HMF), has attracted great attention and interest of many scientists because of its peculiar symmetrical structure and wide potential applications. At present, studies of the production of DHMF are quickly progressing, with productive approaches being increasingly developed, and many crucial achievements have been continually obtained. However, to date, a special and real-time review of this research area is still lacking. To gain more insight into the current research situation, this review comprehensively summarizes and discusses state-of-the-art advancements of the production of DHMF from HMF via various chemocatalytic pathways, such as conventional hydrogenation, transfer hydrogenation, electrocatalytic hydrogenation, photocatalytic hydrogenation, disproportionation reaction, and biocatalytic pathways. Meanwhile, this review also systematically outlines the ...

182 citations

Journal ArticleDOI
TL;DR: In this article, a comparison of different homogeneous and heterogeneous catalysts for renewable cellulosic biomass for 5-hydroxymethylfurfural (HMF) and 2,5-dimethylfuran (DMF) is presented.
Abstract: With the growing shortage of fossil energy and the increasing of concerns over global climate changes and environmental problems have driven the development of alternative energy sources. Recently, great interest has been oriented towards the development of sustainable resources, especially the utilization of lignocellulosic biomass, a renewable and the most abundant source of biomass originating from plant photosynthesis in nature. Catalytic conversion of renewable cellulosic biomass can produce a series of compounds such as 5-hydroxymethylfurfural (HMF) and 2,5-dimethylfuran (DMF) which are important platform compounds and ideal renewable alternative to fossil fuels. To obtain the renowned bio-based platform molecules, various catalysts and reaction systems have been used in the past decade years. To fully understand current biomass to HMF and DMF development, it is necessary to have an overview and comparison of different homogeneous and heterogeneous catalysts. The reaction systems also exhibit a remarkable impact on the yield and distribution of products with different catalysts. General trends and future research directions of using biomass for HMF, DMF production are also discussed systematically.

167 citations

References
More filters
Journal ArticleDOI
TL;DR: Hydrogen Production by Water−Gas Shift Reaction 4056 4.1.
Abstract: 1.0. Introduction 4044 2.0. Biomass Chemistry and Growth Rates 4047 2.1. Lignocellulose and Starch-Based Plants 4047 2.2. Triglyceride-Producing Plants 4049 2.3. Algae 4050 2.4. Terpenes and Rubber-Producing Plants 4052 3.0. Biomass Gasification 4052 3.1. Gasification Chemistry 4052 3.2. Gasification Reactors 4054 3.3. Supercritical Gasification 4054 3.4. Solar Gasification 4055 3.5. Gas Conditioning 4055 4.0. Syn-Gas Utilization 4056 4.1. Hydrogen Production by Water−Gas Shift Reaction 4056

7,067 citations

Journal ArticleDOI
TL;DR: Renewable Resources Robert-Jan van Putten,†,‡ Jan C. van der Waal,† Ed de Jong,*,† Carolus B. Rasrendra,*,⊥ Hero J. Heeres,*,‡ and Johannes G. de Vries.
Abstract: Renewable Resources Robert-Jan van Putten,†,‡ Jan C. van der Waal,† Ed de Jong,*,† Carolus B. Rasrendra,‡,⊥ Hero J. Heeres,*,‡ and Johannes G. de Vries* †Avantium Chemicals, Zekeringstraat 29, 1014 BV Amsterdam, the Netherlands ‡Department of Chemical Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands DSM Innovative Synthesis BV, P.O. Box 18, 6160 MD Geleen, the Netherlands Department of Chemical Engineering, Institut Teknologi Bandung, Ganesha 10, Bandung 40132, Indonesia

2,267 citations

Journal ArticleDOI
21 Jun 2007-Nature
TL;DR: This catalytic strategy for the production of 2,5-dimethylfuran from fructose (a carbohydrate obtained directly from biomass or by the isomerization of glucose) for use as a liquid transportation fuel may diminish the authors' reliance on petroleum.
Abstract: With petrol prices on the rise, biofuels are big news these days. For applications in the transportation sector, perhaps the best known liquid biofuel is biomass-derived ethanol. But ethanol has its limitations: it is highly volatile, absorbs water and has a low energy density. A team from the University of Wisconsin-Madison has developed a two-step catalytic process that can convert fructose into a potentially better liquid biofuel, 2,5-dimethylfuran (DMF). This has 40%-higher energy density and a higher boiling point than ethanol, and is not water soluble. Fructose can be made directly from biomass or from glucose and although there's some work needed before DMF production can be made commercially viable, this new catalytic process looks promising. Diminishing fossil fuel reserves and growing concerns about global warming indicate that sustainable sources of energy are needed in the near future. For fuels to be useful in the transportation sector, they must have specific physical properties that allow for efficient distribution, storage and combustion; these properties are currently fulfilled by non-renewable petroleum-derived liquid fuels. Ethanol, the only renewable liquid fuel currently produced in large quantities, suffers from several limitations, including low energy density, high volatility, and contamination by the absorption of water from the atmosphere. Here we present a catalytic strategy for the production of 2,5-dimethylfuran from fructose (a carbohydrate obtained directly from biomass or by the isomerization of glucose) for use as a liquid transportation fuel. Compared to ethanol, 2,5-dimethylfuran has a higher energy density (by 40 per cent), a higher boiling point (by 20 K), and is not soluble in water. This catalytic strategy creates a route for transforming abundant renewable biomass resources1,2 into a liquid fuel suitable for the transportation sector, and may diminish our reliance on petroleum.

2,033 citations

Journal ArticleDOI
TL;DR: This paper presents a new state-of-the-art implementation of the iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) Key Laborotary of Catalysis, which automates the very labor-intensive and therefore expensive and therefore time-heavy and expensive process ofalysis.
Abstract: and Fuels Changzhi Li,† Xiaochen Zhao,† Aiqin Wang,† George W. Huber,†,‡ and Tao Zhang*,† †State Key Laborotary of Catalysis, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China ‡Department of Chemical and Biological Engineering, University of WisconsinMadison, Madison, Wisconsin 53706, United States

1,977 citations