scispace - formally typeset
Search or ask a question
Book ChapterDOI

Recent Advances in Nanomaterials for Wastewater Treatment

TL;DR: In this paper, the use of semiconducting nanoparticles for wastewater treatment is discussed, and the role of nanomaterials in adsorption techniques (specifically, carbon-based nanoadsorbents) is discussed in detail.
Abstract: Developing an efficient wastewater treatment technique is one of the major necessities of the twenty-first century, owing to the scarcity of water resources. Besides, it is of paramount important to find appropriate methodologies to economically treat wastewater. Recent advances in nanotechnology have attracted the attention of many researchers for wastewater treatment. The major advantages of such nanomaterial-based systems are that they can be reused and have been found to be very effective. Though many research works have been reported in this regard, there is very limited collective information. Hence, the major objective of this work is to describe recent achievements in nanomaterial-based systems for wastewater treatment. This chapter critically reviews and lists the uses of nanomaterials in wastewater treatment. This comprises the utilization of semiconducting nanoparticles either alone or combined with ozonation, the Fenton process, or sonolysis for effective degradation/removal of organic pollutants. Furthermore, the effectiveness of nanotechnology in antimicrobial activity to produce pure water via an eco-friendly route is discussed. Similarly, the role of nanomaterials in adsorption techniques (specifically, carbon-based nanoadsorbents) to remove heavy metal contamination from industrial wastewater is also discussed in detail.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, a review emphasises advances in nanotechnology and their respective kinetics, different reaction-based models for wastewater treatment, and discusses several nano-material based approaches employed in wastewater treatment deliberated in this manuscript.

17 citations

Journal ArticleDOI
TL;DR: In this article , a review summarizes recent advances in the synthesis, reporting techniques, and applications of functionalized nanomaterials (FNMs) in adsorptive and photocatalytic removal of pollutants from wastewater.
Abstract: Abstract Nanotechnology has emerged as an extraordinary and rapidly developing discipline of science. It has remolded the fate of the whole world by providing diverse horizons in different fields. Nanomaterials are appealing because of their incredibly small size and large surface area. Apart from the naturally occurring nanomaterials, synthetic nanomaterials are being prepared on large scales with different sizes and properties. Such nanomaterials are being utilized as an innovative and green approach in multiple fields. To expand the applications and enhance the properties of the nanomaterials, their functionalization and engineering are being performed on a massive scale. The functionalization helps to add to the existing useful properties of the nanomaterials, hence broadening the scope of their utilization. A large class of covalent and non-covalent functionalized nanomaterials (FNMs) including carbons, metal oxides, quantum dots, and composites of these materials with other organic or inorganic materials are being synthesized and used for environmental remediation applications including wastewater treatment. This review summarizes recent advances in the synthesis, reporting techniques, and applications of FNMs in adsorptive and photocatalytic removal of pollutants from wastewater. Future prospects are also examined, along with suggestions for attaining massive benefits in the areas of FNMs.

6 citations

Journal ArticleDOI
TL;DR: In this paper , a simple hydrothermal method was used to synthesize the SrTiO3/rGO@Ag composites, followed by decorating the surface with Ag particles by using the photodeposition process.
Abstract: Understanding the graphene/semiconductor/metal interactions is crucial to design innovative photocatalytic materials with efficient photocatalytic activity for environmental cleanup applications. SrTiO3 on reduced graphene oxide (rGO) with various graphene contents was successfully synthesized in this study utilizing a simple hydrothermal method, followed by decorating the surface with Ag particles by using the photodeposition process. Under UV-visible light irradiation, the resulting composites were tested for their improved photocatalytic activity to decompose methylene blue (MB). The prepared photocatalysts were characterized by XRD, SEM, EDX, DLS, FT-IR, Raman spectroscopy, and DRS. First-principle density functional theory calculations (DFT) were also carried out by using the generalized gradient approximation (GGA) and PBE functional with the addition of on-site Coulomb correction (GGA + U). The obtained SrTiO3/rGO@Ag composites showed great improvement in the photocatalytic performances over pristine SrTiO3. For the degradation reaction of MB, SrTiO3/rGO20%@Ag4% composites yielded the best photocatalytic activity with efficacy reach 94%, which was also shown that it could be recycled up to four times with nearly unchanged photocatalytic activity.

4 citations

Book ChapterDOI
01 Jan 2021
TL;DR: In this paper, the authors discuss the latest technologies which are available right now using the chalcogenides nanomaterials, as catalysts, remediation of various environmental contaminants, and their role in treating contaminated water including organic contaminants degradation alongside bacterial disinfection.
Abstract: Nowadays pollution is a major concern for human mankind. As the generations are passing by, the more the worse it is getting to protect the environment. Every part of the environment is being contaminated due and in reverse, the humans and the other living being getting affected due to the consequences done by humans. Even though there are several technologies available to protect the environment still we find some voids to fill in and in this process, new technology evolves in. Water pollution is also considered to be one of the most ghastly situations, where economic development, rapid industrialization and even the population overgrowth is playing a key role. Due to rapid growth the release of several organic as well as inorganic substances into the environment, this is further leading to environmental pollution as well as the contamination of water. Because of this, combining nanotechnology in wastewater treatment will improve the quality of water. The major advantage of using the nanoparticles is they possess unique characteristics and have a high surface area where the unwanted particles get absorbed in these nanoparticles and get removed from them because of their high surface area. It can also be used for removing toxic substances. In this chapter, we discuss the latest technologies, which are available right now using the chalcogenides nanomaterials. Like, to disinfect the bacterial communities in wastewater, aspects of chalcogenide nanomaterials, as catalysts, remediation of various environmental contaminants, and their role in treating the contaminated water including organic contaminants degradation alongside bacterial disinfection.

3 citations

References
More filters
Journal ArticleDOI
17 Jul 2003-Nature
TL;DR: Nanotechnology is set to be the next campaign focus for environmental groups, but can scientists avoid the mistakes made over genetically modified food, and secure public trust for research?
Abstract: Nanotechnology is set to be the next campaign focus for environmental groups. Can scientists avoid the mistakes made over genetically modified food, and secure public trust for their research? Geoff Brumfiel investigates.

219 citations

Journal ArticleDOI
TL;DR: In this article, a chitosan functionalized graphene oxide (GO) was proposed as an efficient adsorbent to improve arsenic adsorption from aqueous solutions, which is a good host of welcoming the incoming guest, arsenic oxyanion.
Abstract: Nowadays, there is a wide variety of arsenic decontamination processes being adsorption processes the most efficient. In this concern, chitosan functionalized graphene oxide (GO), have been proposed as an efficient adsorbent to improve arsenic adsorption from aqueous solutions. The chitosan functionalized GO adsorbent acts as a good host of welcoming the incoming guest, arsenic oxyanion and several interesting interactions such as cation–π interaction, (RNH 3 + ---aromatic π moiety), electrostatic interaction (H 2 AsO 4 − , HAsO 4 2− ---- + NH 3 R), inter and intermolecular hydrogen bonding as well as anion–π interaction (R-COO − ---aromatic π moiety), (R–O − ---aromatic π moiety), could be conceptualized in this process, the abundant oxygen-containing functional groups on the adsorbent surfaces play an important role on As(V)/As(III) adsorption. The prepared chitosan-GO adsorbent was characterized by X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, thermogravimetric analysis (TGA) analysis, powder-X-ray diffraction (powder-XRD), transmission electron microscopes (TEM), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopes (SEM) and energy dispersive X-ray analysis (EDX) studies. The capability of ICP-MS for As(III)/As(V) adsorption was extensively studied under different optimal parameters in aqueous solutions, the applicability of this method is demonstrated economical and practical applications for efficient adsorption of arsenic from aqueous solutions.

213 citations

Journal ArticleDOI
TL;DR: In this paper, a review focusing on both fundamentals and applicability of heterogeneous photocatalysis as an advanced oxidation technology for degradation of volatile organic compounds (VOC) in air, with peer-reviewed literature data published since 1997 being the backbone of this article.
Abstract: This review focuses on both fundamentals and applicability of heterogeneous photocatalysis as an advanced oxidation technology for degradation of volatile organic compounds (VOC) in air, with peer-reviewed literature data published since 1997 being the backbone of this article. Four key issues are covered. First, the underlying principles of heterogeneous photocatalysis are outlined using the band gap model. Second, a detailed overview is given of chlorinated, monocyclic aromatic and sulfurous VOC recently selected as target compounds in lab-scale photocatalytic degradation experiments. Data on reactor types, photocatalysts, reaction conditions, and reported results are tabulated. The third section deals with reaction products, analytical techniques used for separation and/or identification, proposed reaction pathways, and catalyst deactivation. Finally, effects of process parameters such as gas-phase pollutant and oxygen concentration, relative humidity, temperature, and light intensity on degradation ki...

202 citations

Journal ArticleDOI
TL;DR: The accelerated sonophotocatalytic degradation of Reactive Red (RR) 198 dye under visible light using dye sensitized TiO(2) activated by ultrasound using ultrasound to ascertain the synergistic effect on the degradation techniques.

195 citations

Journal ArticleDOI
TL;DR: It is suggested that peroxidation and decomposition of membrane fatty acids could be one of the factors contributing to the morphological changes of bacteria observed under SEM, and ultimately, cell death.
Abstract: Titanium dioxide is a photocatalyst with well-known ability to oxidise a wide range of organic contaminants as well as to destroy microbial cells. In the present work TiO2 nanoparticles with high specific surface area (150m(2)/g) were used to prepare nanostructured films. The TiO2 nanoparticle-based film in combination with UV-A illumination with intensity (22W/m(2)) comparable to that of the sunlight in the UV-A region was used to demonstrate light-induced antibacterial effects. Fast and effective inactivation of Escherichia coli cells on the prepared thin films was observed. Visualization of bacterial cells under scanning electron microscopy (SEM) showed enlargement of the cells, distortion of cellular membrane and possible leakage of cytoplasm after 10min of exposure to photoactivated TiO2. According to the plate counts there were no viable cells as early as after 20min of exposure to UV-A activated TiO2. In parallel to effects on bacterial cell viability and morphology, changes in saturated and unsaturated fatty acids - important components of bacterial cell membrane-were studied. Fast decomposition of saturated fatty acids and changes in chemical structure of unsaturated fatty acids were detected. Thus, we suggest that peroxidation and decomposition of membrane fatty acids could be one of the factors contributing to the morphological changes of bacteria observed under SEM, and ultimately, cell death.

188 citations