scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Recent advances in organic electrosynthesis employing transition metal complexes as electrocatalysts

TL;DR: In this article, a review of the recent research progress in the area of indirect electrolysis using transition metals is presented, which is the impetus for this review. But there is a lack of articles that focus on the recent progress in indirect organic electrosynthesis using transition metal.
Abstract: Organic electrosynthesis has been widely used as an environmentally conscious alternative to conventional methods for redox reactions because it utilizes electric current as a traceless redox agent instead of chemical redox agents. Indirect electrolysis employing a redox catalyst has received tremendous attention, since it provides various advantages compared to direct electrolysis. With indirect electrolysis, overpotential of electron transfer can be avoided, which is inherently milder, thus wide functional group tolerance can be achieved. Additionally, chemoselectivity, regioselectivity, and stereoselectivity can be tuned by the redox catalysts used in indirect electrolysis. Furthermore, electrode passivation can be avoided by preventing the formation of polymer films on the electrode surface. Common redox catalysts include N-oxyl radicals, hypervalent iodine species, halides, amines, benzoquinones (such as DDQ and tetrachlorobenzoquinone), and transition metals. In recent years, great progress has been made in the field of indirect organic electrosynthesis using transition metals as redox catalysts for reaction classes including C–H functionalization, radical cyclization, and cross-coupling of aryl halides-each owing to the diverse reactivity and accessible oxidation states of transition metals. Although various reviews of organic electrosynthesis are available, there is a lack of articles that focus on recent research progress in the area of indirect electrolysis using transition metals, which is the impetus for this review.
Citations
More filters
Journal ArticleDOI
TL;DR: This perspective highlights the recent progress of each type of electrochemical reaction and relatively focuses on the transition metal-catalyzed paired electrolysis, showcasing that electrochemical reactions involving transition metal catalysis have advantages over conventional reactions in terms of controlling the reaction activity and selectivity.
Abstract: Transition metal-catalyzed organic electrochemistry is a rapidly growing research area owing in part to the ability of metal catalysts to alter the selectivity of a given transformation. This conversion mainly focuses on transition metal-catalyzed anodic oxidation and cathodic reduction and great progress has been achieved in both areas. Typically, only one of the half-cell reactions is involved in the organic reaction while a sacrificial reaction occurs at the counter electrode, which is inherently wasteful since one electrode is not being used productively. Recently, transition metal-catalyzed paired electrolysis that makes use of both anodic oxidation and cathodic reduction has attracted much attention. This perspective highlights the recent progress of each type of electrochemical reaction and relatively focuses on the transition metal-catalyzed paired electrolysis, showcasing that electrochemical reactions involving transition metal catalysis have advantages over conventional reactions in terms of controlling the reaction activity and selectivity and figuring out that transition metal-catalyzed paired electrolysis is an important direction of organic electrochemistry in the future and offers numerous opportunities for new and improved organic reaction methods.

46 citations

Journal ArticleDOI
TL;DR: In this article , a novel electrochemical ring-opening dicarboxylation of C−C single bonds in strained rings with CO2 has been investigated, which is the first realization of an electroreductive ring opening reaction of strained rings, including commercialized ones.
Abstract: Diacids are important monomers in the polymer industry to construct valuable materials. Dicarboxylation of unsaturated bonds, such as alkenes and alkynes, with CO2 has been demonstrated as a promising synthetic method. However, dicarboxylation of C─C single bonds with CO2 has rarely been investigated. Herein we report a novel electrochemical ring-opening dicarboxylation of C─C single bonds in strained rings with CO2. Structurally diverse glutaric acid and adipic acid derivatives were synthesized from substituted cyclopropanes and cyclobutanes in moderate to high yields. In contrast to oxidative ring openings, this is also the first realization of an electroreductive ring-opening reaction of strained rings, including commercialized ones. Control experiments suggested that radical anions and carbanions might be the key intermediates in this reaction. Moreover, this process features high step and atom economy, mild reaction conditions (1 atm, room temperature), good chemoselectivity and functional group tolerance, low electrolyte concentration, and easy derivatization of the products. Furthermore, we conducted polymerization of the corresponding diesters with diols to obtain a potential UV-shielding material with a self-healing function and a fluorine-containing polyester, whose performance tests showed promising applications.

41 citations

Journal ArticleDOI
TL;DR: In this article , an electrocatalytic strategy for cyclopropanation of active methylene compounds, employing an organic catalyst, is presented, which shows a broad substrate scope and excellent scalability, requires no metal catalyst or external chemical oxidant, and provides convenient access to several types of cyclop-polycyclic and carbocyclic compounds.
Abstract: Cyclopropane is a prevalent structural unit in natural products and bioactive compounds. While the transition metal-catalyzed alkene cyclopropanation of functionalized compounds such as α-diazocarbonyl derivatives has been well established and provides straightforward access to cyclopropanes, cyclopropanation directly from the more stable and simpler methylene compounds has remained an unsolved challenge despite the highly desirable benefits of minimal prefunctionalization and increased operational safety. Herein we report an electrocatalytic strategy for the cyclopropanation of active methylene compounds, employing an organic catalyst. The method shows a broad substrate scope and excellent scalability, requires no metal catalyst or external chemical oxidant, and provides convenient access to several types of cyclopropane-fused heterocyclic and carbocyclic compounds. Mechanistic investigations suggest that the reactions proceed through a radical-polar crossover process to form the two new carbon-carbon bonds in the nascent cyclopropane ring.

33 citations

Journal ArticleDOI
01 May 2022-eScience
TL;DR: In this article , a review summarizes the recently developed reductive electrosynthetic protocols, discussing and highlighting reaction features, substrate scopes, applications, and plausible mechanisms to reveal the recent trends in this area.

32 citations

Journal ArticleDOI
TL;DR: In this article , the authors give an overview of electrocarboxylation reactions using CO2 and give a classification of substrates, such as alkenes, organic (pseudo)halides, aldehydes, ketones, and imines.
Abstract: From the viewpoint of abundance, economy, non-toxicity, and renewability, CO2 is the ideal C1 synthon in organic synthetic chemistry. Utilizing CO2 for chemical conversion to synthesize highly value-added fine chemicals is of great significance. Organic electrochemical synthesis that employs electrons as redox reagents to achieve selective oxidation or reduction has attracted much attention in the past decades. In this review, recent advances in the electrochemical carboxylations using CO2 from the perspective of organic synthesis will be summarized. We give an overview about the research progress of electrocarboxylation reactions according to the classification of substrates, such as alkenes, organic (pseudo)halides, aldehydes, ketones, and imines. The carbanions produced by cathodic reduction are important intermediates in the electrocarboxylation reactions using CO2.

26 citations

References
More filters
Journal ArticleDOI
TL;DR: This is the first comprehensive review encompassing the large body of work in this field over the past 5 years, and will focus specifically on ligand-directed C–H functionalization reactions catalyzed by palladium.
Abstract: 1.1 Introduction to Pd-catalyzed directed C–H functionalization The development of methods for the direct conversion of carbon–hydrogen bonds into carbon-oxygen, carbon-halogen, carbon-nitrogen, carbon-sulfur, and carbon-carbon bonds remains a critical challenge in organic chemistry. Mild and selective transformations of this type will undoubtedly find widespread application across the chemical field, including in the synthesis of pharmaceuticals, natural products, agrochemicals, polymers, and feedstock commodity chemicals. Traditional approaches for the formation of such functional groups rely on pre-functionalized starting materials for both reactivity and selectivity. However, the requirement for installing a functional group prior to the desired C–O, C–X, C–N, C–S, or C–C bond adds costly chemical steps to the overall construction of a molecule. As such, circumventing this issue will not only improve atom economy but also increase the overall efficiency of multi-step synthetic sequences. Direct C–H bond functionalization reactions are limited by two fundamental challenges: (i) the inert nature of most carbon-hydrogen bonds and (ii) the requirement to control site selectivity in molecules that contain diverse C–H groups. A multitude of studies have addressed the first challenge by demonstrating that transition metals can react with C–H bonds to produce C–M bonds in a process known as “C–H activation”.1 The resulting C–M bonds are far more reactive than their C–H counterparts, and in many cases they can be converted to new functional groups under mild conditions. The second major challenge is achieving selective functionalization of a single C–H bond within a complex molecule. While several different strategies have been employed to address this issue, the most common (and the subject of the current review) involves the use of substrates that contain coordinating ligands. These ligands (often termed “directing groups”) bind to the metal center and selectively deliver the catalyst to a proximal C–H bond. Many different transition metals, including Ru, Rh, Pt, and Pd, undergo stoichiometric ligand-directed C–H activation reactions (also known as cyclometalation).2,3 Furthermore, over the past 15 years, a variety of catalytic carbon-carbon bond-forming processes have been developed that involve cyclometalation as a key step.1b–d,4 The current review will focus specifically on ligand-directed C–H functionalization reactions catalyzed by palladium. Palladium complexes are particularly attractive catalysts for such transformations for several reasons. First, ligand-directed C–H functionalization at Pd centers can be used to install many different types of bonds, including carbon-oxygen, carbon-halogen, carbon-nitrogen, carbon-sulfur, and carbon-carbon linkages. Few other catalysts allow such diverse bond constructions,5,6,7 and this versatility is predominantly the result of two key features: (i) the compatibility of many PdII catalysts with oxidants and (ii) the ability to selectively functionalize cyclopalladated intermediates. Second, palladium participates in cyclometalation with a wide variety of directing groups, and, unlike many other transition metals, promotes C–H activation at both sp2 and sp3 C–H sites. Finally, the vast majority of Pd-catalyzed directed C–H functionalization reactions can be performed in the presence of ambient air and moisture, making them exceptionally practical for applications in organic synthesis. While several accounts have described recent advances, this is the first comprehensive review encompassing the large body of work in this field over the past 5 years (2004–2009). Both synthetic applications and mechanistic aspects of these transformations are discussed where appropriate, and the review is organized on the basis of the type of bond being formed.

5,179 citations

Journal ArticleDOI
TL;DR: A review of palladium-catalyzed coupling of CH bonds with organometallic reagents through a PdII/Pd0 catalytic cycle can be found in this paper.
Abstract: Pick your Pd partners: A number of catalytic systems have been developed for palladium-catalyzed CH activation/CC bond formation. Recent studies concerning the palladium(II)-catalyzed coupling of CH bonds with organometallic reagents through a PdII/Pd0 catalytic cycle are discussed (see scheme), and the versatility and practicality of this new mode of catalysis are presented. Unaddressed questions and the potential for development in the field are also addressed. In the past decade, palladium-catalyzed CH activation/CC bond-forming reactions have emerged as promising new catalytic transformations; however, development in this field is still at an early stage compared to the state of the art in cross-coupling reactions using aryl and alkyl halides. This Review begins with a brief introduction of four extensively investigated modes of catalysis for forming CC bonds from CH bonds: PdII/Pd0, PdII/PdIV, Pd0/PdII/PdIV, and Pd0/PdII catalysis. A more detailed discussion is then directed towards the recent development of palladium(II)-catalyzed coupling of CH bonds with organometallic reagents through a PdII/Pd0 catalytic cycle. Despite the progress made to date, improving the versatility and practicality of this new reaction remains a tremendous challenge.

3,533 citations

Journal ArticleDOI
TL;DR: This review focuses on Rh-catalyzed methods for C-H bond functionalization, which have seen widespread success over the course of the last decade and are discussed in detail in the accompanying articles in this special issue of Chemical Reviews.
Abstract: Once considered the 'holy grail' of organometallic chemistry, synthetically useful reactions employing C-H bond activation have increasingly been developed and applied to natural product and drug synthesis over the past decade. The ubiquity and relative low cost of hydrocarbons makes C-H bond functionalization an attractive alternative to classical C-C bond forming reactions such as cross-coupling, which require organohalides and organometallic reagents. In addition to providing an atom economical alternative to standard cross - coupling strategies, C-H bond functionalization also reduces the production of toxic by-products, thereby contributing to the growing field of reactions with decreased environmental impact. In the area of C-C bond forming reactions that proceed via a C-H activation mechanism, rhodium catalysts stand out for their functional group tolerance and wide range of synthetic utility. Over the course of the last decade, many Rh-catalyzed methods for heteroatom-directed C-H bond functionalization have been reported and will be the focus of this review. Material appearing in the literature prior to 2001 has been reviewed previously and will only be introduced as background when necessary. The synthesis of complex molecules from relatively simple precursors has long been a goal for many organic chemists. The ability to selectively functionalize a molecule with minimal pre-activation can streamline syntheses and expand the opportunities to explore the utility of complex molecules in areas ranging from the pharmaceutical industry to materials science. Indeed, the issue of selectivity is paramount in the development of all C-H bond functionalization methods. Several groups have developed elegant approaches towards achieving selectivity in molecules that possess many sterically and electronically similar C-H bonds. Many of these approaches are discussed in detail in the accompanying articles in this special issue of Chemical Reviews. One approach that has seen widespread success involves the use of a proximal heteroatom that serves as a directing group for the selective functionalization of a specific C-H bond. In a survey of examples of heteroatom-directed Rh catalysis, two mechanistically distinct reaction pathways are revealed. In one case, the heteroatom acts as a chelator to bind the Rh catalyst, facilitating reactivity at a proximal site. In this case, the formation of a five-membered metallacycle provides a favorable driving force in inducing reactivity at the desired location. In the other case, the heteroatom initially coordinates the Rh catalyst and then acts to stabilize the formation of a metal-carbon bond at a proximal site. A true test of the utility of a synthetic method is in its application to the synthesis of natural products or complex molecules. Several groups have demonstrated the applicability of C-H bond functionalization reactions towards complex molecule synthesis. Target-oriented synthesis provides a platform to test the effectiveness of a method in unique chemical and steric environments. In this respect, Rh-catalyzed methods for C-H bond functionalization stand out, with several syntheses being described in the literature that utilize C-H bond functionalization in a key step. These syntheses are highlighted following the discussion of the method they employ.

3,210 citations

Journal ArticleDOI
TL;DR: The motivation for studying Pd-catalyzed C-H functionalization assisted by weakly coordinating functional groups is discussed, and efforts to bring reactions of this type to fruition are chronicle.
Abstract: Reactions that convert carbon–hydrogen (C–H) bonds into carbon–carbon (C–C) or carbon–heteroatom (C–Y) bonds are attractive tools for organic chemists, potentially expediting the synthesis of target molecules through new disconnections in retrosynthetic analysis. Despite extensive inorganic and organometallic study of the insertion of homogeneous metal species into unactivated C–H bonds, practical applications of this technology in organic chemistry are still rare. Only in the past decade have metal-catalyzed C–H functionalization reactions become more widely utilized in organic synthesis.Research in the area of homogeneous transition metal–catalyzed C–H functionalization can be broadly grouped into two subfields. They reflect different approaches and goals and thus have different challenges and opportunities. One approach involves reactions of completely unfunctionalized aromatic and aliphatic hydrocarbons, which we refer to as “first functionalization”. Here the substrates are nonpolar and hydrophobic a...

2,291 citations

Trending Questions (1)
What are commonly organometallic catalysts used in electrolysis?

The paper does not specifically mention organometallic catalysts used in electrolysis.