scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Recent Advances in Solution-Phase Multicomponent Methodology for the Synthesis of Heterocyclic Compounds

01 Jul 2003-Synthesis (© Georg Thieme Verlag Stuttgart ˙ New York)-Vol. 2003, Iss: 10, pp 1471-1499
TL;DR: A review of solution-phase multi-component procedures for the synthesis of heterocyclic compounds can be found in this paper, where the authors give an overview of the progress made in the past decade.
Abstract: Following the increased interest from the pharmaceutical industry for the generation of diverse libraries of heterocyclic compounds, scientific efforts have become more and more focused on the development of novel multi-component procedures as a means of gaining rapid access to such compounds. Initially, the development of solid-phase procedures received considerable attention. However, current efforts are increasingly concerned with the development of solution-phase procedures. The latter will be the subject of discussion in this review, which aims to give an overview of the progress made in the past decade. After a general introduction, non-catalyzed, acid-catalyzed, and transition metal-catalyzed solution-phase multi-component procedures for the preparation of a wide range of heterocycles will be discussed. The last chapter discusses the role of cycloaddition reactions in the development of novel MCRs for the synthesis of heterocyclic compounds. In spite of their important role in the synthesis of heterocyclic compounds, MCRs involving isocyanides are not discussed in this review, since the topic has been exhaustively reviewed several times. 1 Introduction 2 Non-Catalyzed MCRs 3 Acid-Catalyzed MCRs 4 Transition Metal-Catalyzed or -Mediated MCRs 5 MCRs Involving Cycloaddition Reactions 6 Conclusions and Outlook.
Citations
More filters
Journal ArticleDOI
TL;DR: This paper presents a new approach to drug design called “combinatorial biosynthesis and drug discovery through nanofiltration”, which combines the efforts of a single investigator with those of a number of other scientists.
Abstract: Multicomponent reactions (MCRs) are one-pot reactions employing more than two starting materials, e.g. 3, 4, … 7, where most of the atoms of the starting materials are incorporated in the final product.1 Several descriptive tags are regularly attached to MCRs (Fig. 1): they are atom economic, e.g. the majority if not all of the atoms of the starting materials are incorporated in the product; they are efficient, e.g. they efficiently yield the product since the product is formed in one-step instead of multiple sequential steps; they are convergent, e.g. several starting materials combine in one reaction to form the product; they exhibit a very high bond-forming-index (BFI), e.g. several non-hydrogen atom bonds are formed in one synthetic transformation.2 Therefore MCRs are often a useful alternative to sequential multistep synthesis. Open in a separate window Figure 1 Above: multistep syntheses can be divergent (sequential) or convergent; below: in analogy MCR reactions are convergent and one or two component reactions are divergent or less convergent.

1,840 citations

Journal ArticleDOI
TL;DR: Asymmetric multicomponent reactions involve the preparation of chiral compounds by the reaction of three or more reagents added simultaneously and has some advantages over classic divergent reaction strategies, such as lower costs, time, and energy, as well as environmentally friendlier aspects.
Abstract: Asymmetric multicomponent reactions involve the preparation of chiral compounds by the reaction of three or more reagents added simultaneously. This kind of addition and reaction has some advantages over classic divergent reaction strategies, such as lower costs, time, and energy, as well as environmentally friendlier aspects. All these advantages, together with the high level of stereoselectivity attained in some of these reactions, will force chemists in industry as in academia to adopt this new strategy of synthesis, or at least to consider it as a viable option. The positive aspects as well as the drawbacks of this strategy are discussed in this Review.

1,479 citations

Journal ArticleDOI
TL;DR: An overview of general strategies that allow the design of novel multicomponent reactions is presented and the challenges and opportunities for the future are discussed.
Abstract: Multicomponent reactions have become increasingly popular as tools for the rapid generation of small-molecule libraries. However, to ensure sufficient molecular diversity and complexity, there is a continuous need for novel reactions. Although serendipity has always played an important role in the discovery of novel (multicomponent) reactions, rational design strategies have become much more important over the past decade. In this Review, we present an overview of general strategies that allow the design of novel multicomponent reactions. The challenges and opportunities for the future will be discussed.

1,036 citations