scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Recent advances in the electrolytes for interfacial stability of high-voltage cathodes in lithium-ion batteries

01 Jan 2015-RSC Advances (The Royal Society of Chemistry)-Vol. 5, Iss: 4, pp 2732-2748
TL;DR: In this article, the authors describe several challenges for the cathode (spinel lithium manganese oxide (LMO), lithium cobalt oxide (LCO), lithium nickel cobalt manganes oxide (NCM), spinel lithium ion ion oxide (SILO), and lithium-rich layered oxide (Li-rich cathode))-electrolyte interfaces and highlight the recent progress in the use of oxidative additives and highvoltage solvents in high-performance cells.
Abstract: Advanced electrolytes with unique functions such as in situ formation of a stable artificial solid electrolyte interphase (SEI) layer on the anode and the cathode, and the improvement in oxidation stability of the electrolyte have recently gained recognition as a promising means for highly reliable lithium-ion batteries with high energy density. In this review, we describe several challenges for the cathode (spinel lithium manganese oxide (LMO), lithium cobalt oxide (LCO), lithium nickel cobalt manganese oxide (NCM), spinel lithium manganese nickel oxide (LNMO), and lithium-rich layered oxide (Li-rich cathode))-electrolyte interfaces and highlight the recent progress in the use of oxidative additives and high-voltage solvents in high-performance cells.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: Two selected LiTFSI/pyrrolidinium bis(trifluoromethane-sulfonyl)imide room temperature ionic liquid (RTIL) based electrolytes with inherent thermal stability were investigated and outperform the LiPF6/organic carbonate-based electrolyte in terms of cycling performance in LNMO/LTO full-cells at elevated temperatures.
Abstract: Thanks to its high operating voltage, the LiNi0.5Mn1.5O4 (LNMO) spinel represents a promising next-generation cathode material candidate for Lithium ion batteries. However, LNMO-based full-cells with organic carbonate solvent electrolytes suffer from severe capacity fading issues, associated with electrolyte decomposition and concurrent degradative reactions at the electrode/electrolyte interface, especially at elevated temperatures. As promising alternatives, two selected LiTFSI/pyrrolidinium bis(trifluoromethane-sulfonyl)imide room temperature ionic liquid (RTIL) based electrolytes with inherent thermal stability were investigated in this work. Linear sweep voltammetry (LSV) profiles of the investigated LiTFSI/RTIL electrolytes display much higher oxidative stability compared to the state-of-the-art LiPF6/organic carbonate based electrolyte at elevated temperatures. Cycling performance of the LNMO/Li4Ti5O12 (LTO) full-cells with LiTFSI/RTIL electrolytes reveals remarkable improvements with respect to ca...

73 citations

Journal ArticleDOI
TL;DR: In this paper, the authors discuss the key factors contributing to the properties and performance of cathode materials with a comprehensive perspective on various alkali-ion transition metal compounds, including atomic, electronic, crystal and particle structures.
Abstract: The demand for ‘more energy and less carbon’ is one of the most important challenges facing humanity. Exploring not only more efficient renewable energy systems, but also advanced energy conversion and storage materials is an essential requisite to achieve the task. Since the emergence of alkali-ion rechargeable batteries, the development of cathode materials has been considered as a key factor that improves the overall performance of batteries. In this respect, understanding the underlying science of the factors affecting the properties and performance of cathode materials and how to ameliorate them have made remarkable progress. There have been several reports about factors ranging from the nano- to the micrometer scale, and now it is time to build an infrastructure to design advanced cathode materials with a selective and comprehensive perspective on those factors. In this Review article, we discuss the key factors contributing to the properties and performance of cathode materials with a comprehensive perspective on various alkali-ion transition metal compounds. It covers a wide scope of factors from atomic to microscopic levels as follows: atomic, electronic, crystal and particle structures.

66 citations

Journal ArticleDOI
TL;DR: This Letter investigates the application of the high-voltage poly(N-phenyl-5,10-dihydrophenazine) (p-DPPZ) cathodes for K-ion batteries and shows rather outstanding specific power of >3 × 104 W kg-1, thus paving a way to the design of ultrafast and durable high-capacity metal-ION batteries matching the increasing demand for high power and high-energy density electrochemical energy storage devices.
Abstract: Polymeric aromatic amines were shown to be very promising cathodes for lithium-ion batteries. Surprisingly, these materials are scarcely used for designing post-lithium batteries. In this Letter, we investigate the application of the high-voltage poly(N-phenyl-5,10-dihydrophenazine) (p-DPPZ) cathodes for K-ion batteries. The designed batteries demonstrate an impressive specific capacity of 162 mAh g-1 at the current density of 200 mA g-1, operate efficiently at high current densities of 2-10 A g-1, enabling charge and discharge within ∼1-4 min, and deliver the specific capacity of 125-145 mAh g-1 with a retention of 96 and 79% after 100 and 1000 charge-discharge cycles, respectively. Finally, these K-ion batteries with polymeric p-DPPZ cathodes showed rather outstanding specific power of >3 × 104 W kg-1, thus paving a way to the design of ultrafast and durable high-capacity metal-ion batteries matching the increasing demand for high power and high energy density electrochemical energy storage devices.

63 citations

Journal ArticleDOI
Jiahui Chen1, Hui Zhang1, Mingliang Wang1, Jianhong Liu1, Cuihua Li1, Peixin Zhang1 
TL;DR: In this paper, a novel electrolyte additive allyloxytrimethylsilane (AMSL) was proposed to improve the electrochemical performance of high voltage LiNi 0.5 Mn 1.5 O 4 cathode.

62 citations

References
More filters
Journal ArticleDOI
15 Nov 2001-Nature
TL;DR: A brief historical review of the development of lithium-based rechargeable batteries is presented, ongoing research strategies are highlighted, and the challenges that remain regarding the synthesis, characterization, electrochemical performance and safety of these systems are discussed.
Abstract: Technological improvements in rechargeable solid-state batteries are being driven by an ever-increasing demand for portable electronic devices. Lithium-ion batteries are the systems of choice, offering high energy density, flexible and lightweight design, and longer lifespan than comparable battery technologies. We present a brief historical review of the development of lithium-based rechargeable batteries, highlight ongoing research strategies, and discuss the challenges that remain regarding the synthesis, characterization, electrochemical performance and safety of these systems.

17,496 citations

Journal ArticleDOI
18 Nov 2011-Science
TL;DR: The battery systems reviewed here include sodium-sulfur batteries that are commercially available for grid applications, redox-flow batteries that offer low cost, and lithium-ion batteries whose development for commercial electronics and electric vehicles is being applied to grid storage.
Abstract: The increasing interest in energy storage for the grid can be attributed to multiple factors, including the capital costs of managing peak demands, the investments needed for grid reliability, and the integration of renewable energy sources. Although existing energy storage is dominated by pumped hydroelectric, there is the recognition that battery systems can offer a number of high-value opportunities, provided that lower costs can be obtained. The battery systems reviewed here include sodium-sulfur batteries that are commercially available for grid applications, redox-flow batteries that offer low cost, and lithium-ion batteries whose development for commercial electronics and electric vehicles is being applied to grid storage.

11,144 citations

Journal ArticleDOI
TL;DR: The energy that can be stored in Li-air and Li-S cells is compared with Li-ion; the operation of the cells is discussed, as are the significant hurdles that will have to be overcome if such batteries are to succeed.
Abstract: Li-ion batteries have transformed portable electronics and will play a key role in the electrification of transport. However, the highest energy storage possible for Li-ion batteries is insufficient for the long-term needs of society, for example, extended-range electric vehicles. To go beyond the horizon of Li-ion batteries is a formidable challenge; there are few options. Here we consider two: Li-air (O(2)) and Li-S. The energy that can be stored in Li-air (based on aqueous or non-aqueous electrolytes) and Li-S cells is compared with Li-ion; the operation of the cells is discussed, as are the significant hurdles that will have to be overcome if such batteries are to succeed. Fundamental scientific advances in understanding the reactions occurring in the cells as well as new materials are key to overcoming these obstacles. The potential benefits of Li-air and Li-S justify the continued research effort that will be needed.

7,895 citations

Journal ArticleDOI
TL;DR: The phytochemical properties of Lithium Hexafluoroarsenate and its Derivatives are as follows: 2.2.1.
Abstract: 2.1. Solvents 4307 2.1.1. Propylene Carbonate (PC) 4308 2.1.2. Ethers 4308 2.1.3. Ethylene Carbonate (EC) 4309 2.1.4. Linear Dialkyl Carbonates 4310 2.2. Lithium Salts 4310 2.2.1. Lithium Perchlorate (LiClO4) 4311 2.2.2. Lithium Hexafluoroarsenate (LiAsF6) 4312 2.2.3. Lithium Tetrafluoroborate (LiBF4) 4312 2.2.4. Lithium Trifluoromethanesulfonate (LiTf) 4312 2.2.5. Lithium Bis(trifluoromethanesulfonyl)imide (LiIm) and Its Derivatives 4313

5,710 citations

Journal ArticleDOI
TL;DR: The Review will consider some of the current scientific issues underpinning lithium batteries and electric double-layer capacitors.
Abstract: Energy-storage technologies, including electrical double-layer capacitors and rechargeable batteries, have attracted significant attention for applications in portable electronic devices, electric vehicles, bulk electricity storage at power stations, and “load leveling” of renewable sources, such as solar energy and wind power. Transforming lithium batteries and electric double-layer capacitors requires a step change in the science underpinning these devices, including the discovery of new materials, new electrochemistry, and an increased understanding of the processes on which the devices depend. The Review will consider some of the current scientific issues underpinning lithium batteries and electric double-layer capacitors.

2,412 citations