scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Recent advances in the electrolytes for interfacial stability of high-voltage cathodes in lithium-ion batteries

01 Jan 2015-RSC Advances (The Royal Society of Chemistry)-Vol. 5, Iss: 4, pp 2732-2748
TL;DR: In this article, the authors describe several challenges for the cathode (spinel lithium manganese oxide (LMO), lithium cobalt oxide (LCO), lithium nickel cobalt manganes oxide (NCM), spinel lithium ion ion oxide (SILO), and lithium-rich layered oxide (Li-rich cathode))-electrolyte interfaces and highlight the recent progress in the use of oxidative additives and highvoltage solvents in high-performance cells.
Abstract: Advanced electrolytes with unique functions such as in situ formation of a stable artificial solid electrolyte interphase (SEI) layer on the anode and the cathode, and the improvement in oxidation stability of the electrolyte have recently gained recognition as a promising means for highly reliable lithium-ion batteries with high energy density. In this review, we describe several challenges for the cathode (spinel lithium manganese oxide (LMO), lithium cobalt oxide (LCO), lithium nickel cobalt manganese oxide (NCM), spinel lithium manganese nickel oxide (LNMO), and lithium-rich layered oxide (Li-rich cathode))-electrolyte interfaces and highlight the recent progress in the use of oxidative additives and high-voltage solvents in high-performance cells.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: In this article, in situ gas analysis techniques, including cell pressure measurements and online electrochemical mass spectrometry (OEMS), to monitor the decomposition of ethylene carbonate and dimethyl carbonate (DMC) electrolytes on LNMO electrodes.
Abstract: Spinel LiNi0.5Mn1.5O4 (LNMO) is an attractive next-generation cathode material for Li-ion batteries because of its reversible specific charge at high operating potentials. However, the cycling efficiency of Li-ion cells with LNMO-based cathodes is limited by the poor anodic stability of the most commonly employed alkyl carbonate electrolytes. The electrolyte/electrode stability is investigated by in situ gas analysis techniques, including cell pressure measurements and online electrochemical mass spectrometry (OEMS), to monitor the decomposition of ethylene carbonate (EC) and dimethyl carbonate (DMC) electrolytes on LNMO electrodes. Increasing the DMC content, exchanging the LiPF6 salt for LiClO4, and elevating the cell temperature, all result in higher gas evolution rates. The major volatile side reaction products are H2, CO, CO2, and POF3 (only with LiPF6 salt), which display unique gas evolution profiles depending on electrode potential and electrolyte composition. The significantly higher gas evolution rates for the DMC-rich electrolyte are attributed to an electrolyte solution-mediated decomposition cycle, which is facilitated by the enhanced mass transport induced by the lower viscosity of DMC. Differences in reactivity of the Ni cationic redox state on the LNMO surface toward electrolyte decomposition are indicated.

52 citations

Journal ArticleDOI
TL;DR: The introduced Li2WO4 effectively restrains the LiPF6 and carbonate solvent decomposition by consuming PF5 at high cutoff voltage, forming a stable cathode/electrolyte interface film with low resistance.
Abstract: An amount (5 wt %) of lithium tungstate (Li2WO4) as an additive significantly improves the cycle and rate performances of the LiNi0.6Co0.2Mn0.2O2 electrode at the cutoff voltage of 4.6 V. The 5 wt % Li2WO4-mixed LiNi0.6Co0.2Mn0.2O2 electrode delivers a reversible capacity of 199.2 mA h g–1 and keeps 73.1% capacity for 200 cycles at 1 C. It retains 67.4% capacity after 200 cycles at 2 C and delivers a discharge capacity of 167.3 mA h g–1 at 10 C, while those of the pristine electrode are only 44.7% and 87.5 mA h g–1, respectively. It is shown that the structure of the LiNi0.6Co0.2Mn0.2O2 cathode material is not affected by mixing Li2WO4. The introduced Li2WO4 effectively restrains the LiPF6 and carbonate solvent decomposition by consuming PF5 at high cutoff voltage, forming a stable cathode/electrolyte interface film with low resistance.

51 citations

Journal ArticleDOI
TL;DR: The storage of electric power by both faradaic electrochemical extraction/insertion of Li+ in the cathode and electrostatic stored energy in the EDLCs provides a safe and fast charge and discharge with a long cycle life and a greater capacity than can be provided by the cathodes host extraction/ insertion reaction.
Abstract: A room-temperature all-solid-state rechargeable battery cell containing a tandem electrolyte consisting of a Li+-glass electrolyte in contact with a lithium anode and a plasticizer in contact with a conventional, low cost oxide host cathode was charged to 5 V versus lithium with a charge/discharge cycle life of over 23,000 cycles at a rate of 153 mA·g–1 of active material. A larger positive electrode cell with 329 cycles had a capacity of 585 mAh·g–1 at a cutoff of 2.5 V and a current of 23 mA·g–1 of the active material; the capacity rose with cycle number over the 329 cycles tested during 13 consecutive months. Another cell had a discharge voltage from 4.5 to 3.7 V over 316 cycles at a rate of 46 mA·g–1 of active material. Both the Li+-glass electrolyte and the plasticizer contain electric dipoles that respond to the internal electric fields generated during charge by a redistribution of mobile cations in the glass and by extraction of Li+ from the active cathode host particles. The electric dipoles rema...

50 citations

Journal ArticleDOI
TL;DR: In this article, a chemically induced cathode-electrolyte interphase on cathodes using a lithium tetra(trimethylsilyl) borate as a functional precursor was proposed.

48 citations

References
More filters
Journal ArticleDOI
15 Nov 2001-Nature
TL;DR: A brief historical review of the development of lithium-based rechargeable batteries is presented, ongoing research strategies are highlighted, and the challenges that remain regarding the synthesis, characterization, electrochemical performance and safety of these systems are discussed.
Abstract: Technological improvements in rechargeable solid-state batteries are being driven by an ever-increasing demand for portable electronic devices. Lithium-ion batteries are the systems of choice, offering high energy density, flexible and lightweight design, and longer lifespan than comparable battery technologies. We present a brief historical review of the development of lithium-based rechargeable batteries, highlight ongoing research strategies, and discuss the challenges that remain regarding the synthesis, characterization, electrochemical performance and safety of these systems.

17,496 citations

Journal ArticleDOI
18 Nov 2011-Science
TL;DR: The battery systems reviewed here include sodium-sulfur batteries that are commercially available for grid applications, redox-flow batteries that offer low cost, and lithium-ion batteries whose development for commercial electronics and electric vehicles is being applied to grid storage.
Abstract: The increasing interest in energy storage for the grid can be attributed to multiple factors, including the capital costs of managing peak demands, the investments needed for grid reliability, and the integration of renewable energy sources. Although existing energy storage is dominated by pumped hydroelectric, there is the recognition that battery systems can offer a number of high-value opportunities, provided that lower costs can be obtained. The battery systems reviewed here include sodium-sulfur batteries that are commercially available for grid applications, redox-flow batteries that offer low cost, and lithium-ion batteries whose development for commercial electronics and electric vehicles is being applied to grid storage.

11,144 citations

Journal ArticleDOI
TL;DR: The energy that can be stored in Li-air and Li-S cells is compared with Li-ion; the operation of the cells is discussed, as are the significant hurdles that will have to be overcome if such batteries are to succeed.
Abstract: Li-ion batteries have transformed portable electronics and will play a key role in the electrification of transport. However, the highest energy storage possible for Li-ion batteries is insufficient for the long-term needs of society, for example, extended-range electric vehicles. To go beyond the horizon of Li-ion batteries is a formidable challenge; there are few options. Here we consider two: Li-air (O(2)) and Li-S. The energy that can be stored in Li-air (based on aqueous or non-aqueous electrolytes) and Li-S cells is compared with Li-ion; the operation of the cells is discussed, as are the significant hurdles that will have to be overcome if such batteries are to succeed. Fundamental scientific advances in understanding the reactions occurring in the cells as well as new materials are key to overcoming these obstacles. The potential benefits of Li-air and Li-S justify the continued research effort that will be needed.

7,895 citations

Journal ArticleDOI
TL;DR: The phytochemical properties of Lithium Hexafluoroarsenate and its Derivatives are as follows: 2.2.1.
Abstract: 2.1. Solvents 4307 2.1.1. Propylene Carbonate (PC) 4308 2.1.2. Ethers 4308 2.1.3. Ethylene Carbonate (EC) 4309 2.1.4. Linear Dialkyl Carbonates 4310 2.2. Lithium Salts 4310 2.2.1. Lithium Perchlorate (LiClO4) 4311 2.2.2. Lithium Hexafluoroarsenate (LiAsF6) 4312 2.2.3. Lithium Tetrafluoroborate (LiBF4) 4312 2.2.4. Lithium Trifluoromethanesulfonate (LiTf) 4312 2.2.5. Lithium Bis(trifluoromethanesulfonyl)imide (LiIm) and Its Derivatives 4313

5,710 citations

Journal ArticleDOI
TL;DR: The Review will consider some of the current scientific issues underpinning lithium batteries and electric double-layer capacitors.
Abstract: Energy-storage technologies, including electrical double-layer capacitors and rechargeable batteries, have attracted significant attention for applications in portable electronic devices, electric vehicles, bulk electricity storage at power stations, and “load leveling” of renewable sources, such as solar energy and wind power. Transforming lithium batteries and electric double-layer capacitors requires a step change in the science underpinning these devices, including the discovery of new materials, new electrochemistry, and an increased understanding of the processes on which the devices depend. The Review will consider some of the current scientific issues underpinning lithium batteries and electric double-layer capacitors.

2,412 citations