scispace - formally typeset
Journal ArticleDOI

Recent advances in the electrolytes for interfacial stability of high-voltage cathodes in lithium-ion batteries

Reads0
Chats0
TLDR
In this article, the authors describe several challenges for the cathode (spinel lithium manganese oxide (LMO), lithium cobalt oxide (LCO), lithium nickel cobalt manganes oxide (NCM), spinel lithium ion ion oxide (SILO), and lithium-rich layered oxide (Li-rich cathode))-electrolyte interfaces and highlight the recent progress in the use of oxidative additives and highvoltage solvents in high-performance cells.
Abstract
Advanced electrolytes with unique functions such as in situ formation of a stable artificial solid electrolyte interphase (SEI) layer on the anode and the cathode, and the improvement in oxidation stability of the electrolyte have recently gained recognition as a promising means for highly reliable lithium-ion batteries with high energy density. In this review, we describe several challenges for the cathode (spinel lithium manganese oxide (LMO), lithium cobalt oxide (LCO), lithium nickel cobalt manganese oxide (NCM), spinel lithium manganese nickel oxide (LNMO), and lithium-rich layered oxide (Li-rich cathode))-electrolyte interfaces and highlight the recent progress in the use of oxidative additives and high-voltage solvents in high-performance cells.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Artificial interphase engineering of electrode materials to improve the overall performance of lithium-ion batteries

TL;DR: In this paper, the effects of the artificial interphase on the electrochemical performance of the electrode materials are discussed in detail, highlighting the importance of three functions of artificial interphases, including inhibiting electrolyte decomposition, protecting the electrodes from corrosion, and accommodating electrode volume changes.
Journal ArticleDOI

A high-power and fast charging Li-ion battery with outstanding cycle-life

TL;DR: This work demonstrates a new full Li-ion cell constituted by a high-potential cathode material, i.e. LiNi0.5Mn1.5O4, a safe nanostructured anode Material, and a composite electrolyte made by a mixture of an ionic liquid suitable for high potential applications.
Journal ArticleDOI

Correlation between Chemical and Morphological Heterogeneities in LiNi0.5Mn1.5O4 Spinel Composite Electrodes for Lithium-Ion Batteries Determined by Micro-X-ray Fluorescence Analysis

TL;DR: In this article, the effects of cycling rate and state-of-charge on the elemental distribution (Ni and Mn) for LiNi0.5Mn1.5O4/carbon composite electrodes in LNMO/Li cells are visualized.
References
More filters
Journal ArticleDOI

Issues and challenges facing rechargeable lithium batteries

TL;DR: A brief historical review of the development of lithium-based rechargeable batteries is presented, ongoing research strategies are highlighted, and the challenges that remain regarding the synthesis, characterization, electrochemical performance and safety of these systems are discussed.
Journal ArticleDOI

Electrical Energy Storage for the Grid: A Battery of Choices

TL;DR: The battery systems reviewed here include sodium-sulfur batteries that are commercially available for grid applications, redox-flow batteries that offer low cost, and lithium-ion batteries whose development for commercial electronics and electric vehicles is being applied to grid storage.
Journal ArticleDOI

Li-O2 and Li-S batteries with high energy storage.

TL;DR: The energy that can be stored in Li-air and Li-S cells is compared with Li-ion; the operation of the cells is discussed, as are the significant hurdles that will have to be overcome if such batteries are to succeed.
Journal ArticleDOI

Nonaqueous liquid electrolytes for lithium-based rechargeable batteries.

TL;DR: The phytochemical properties of Lithium Hexafluoroarsenate and its Derivatives are as follows: 2.2.1.
Related Papers (5)