scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Recent advances in the electrolytes for interfacial stability of high-voltage cathodes in lithium-ion batteries

01 Jan 2015-RSC Advances (The Royal Society of Chemistry)-Vol. 5, Iss: 4, pp 2732-2748
TL;DR: In this article, the authors describe several challenges for the cathode (spinel lithium manganese oxide (LMO), lithium cobalt oxide (LCO), lithium nickel cobalt manganes oxide (NCM), spinel lithium ion ion oxide (SILO), and lithium-rich layered oxide (Li-rich cathode))-electrolyte interfaces and highlight the recent progress in the use of oxidative additives and highvoltage solvents in high-performance cells.
Abstract: Advanced electrolytes with unique functions such as in situ formation of a stable artificial solid electrolyte interphase (SEI) layer on the anode and the cathode, and the improvement in oxidation stability of the electrolyte have recently gained recognition as a promising means for highly reliable lithium-ion batteries with high energy density. In this review, we describe several challenges for the cathode (spinel lithium manganese oxide (LMO), lithium cobalt oxide (LCO), lithium nickel cobalt manganese oxide (NCM), spinel lithium manganese nickel oxide (LNMO), and lithium-rich layered oxide (Li-rich cathode))-electrolyte interfaces and highlight the recent progress in the use of oxidative additives and high-voltage solvents in high-performance cells.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: In this paper , the use of lithium bis(oxalate)borate (LiBOB) as an electrolyte additive is reported to improve the cycling stability in high voltage LRLO/graphite full cells.
Abstract: Lithium‐rich layered oxides (LRLO) have attracted great interest for high‐energy Li‐ion batteries due to their high theoretical capacity. However, capacity decay and voltage fade during the cycling impede the practical application of LRLO. Herein, the use of lithium bis‐(oxalate)borate (LiBOB) as an electrolyte additive is reported to improve the cycling stability in high voltage LRLO/graphite full cells. The cell with LiBOB‐containing electrolyte delivers 248 mAh g−1 initial capacity and shows no capacity decay after 70 cycles as well as 95.5% retention after 150 cycles over 4.5 V cycling. A systematic mechanism study for the LiBOB‐enabled cycling performance improvement is conducted. Analytical electron microscopy under cryo‐condition confirms the formation of a uniform interphase and less phase transformation on the LRLO particle, accompanied by less voltage decay in the cathode. The formation of B‐F species is identified in the cycled electrolyte, elucidating the HF scavenger effect of LiBOB. Due to less HF corrosion on both electrode interphases, a reduced amount of transition metal dissolution and redeposition on the graphite is proved, thereby mitigating the capacity decay in LRLO/graphite full cells. These findings suggest that the borate additive is a promising strategy to optimize high voltage electrolyte for the industrialization of LRLO.

22 citations

Journal ArticleDOI
TL;DR: In this paper, Li 1.2 Mn 0.54 Ni 0.13 O 2 materials were successfully manufactured via co-precipitation and sol-gel method, respectively, and the effects of sample morphologies on electrochemical performances were investigated.

22 citations

Journal ArticleDOI
TL;DR: In this paper, tris(trimethylsilyl) phosphite (TMSP) and vinylene carbonate (VC) were used as functional additive to improve the performance of Li 1.1 Mn 1.86 Mg 0.04 O 4 (LMO)/graphite full cells.

21 citations

Journal ArticleDOI
TL;DR: In this article, the effect of conductive carbon additives (acetylene black with various specific surface areas and ketjen black) on the electrochemical performance of LiCoPO4 was investigated to develop 5V-class lithium-ion batteries with good cyclability.

21 citations

References
More filters
Journal ArticleDOI
15 Nov 2001-Nature
TL;DR: A brief historical review of the development of lithium-based rechargeable batteries is presented, ongoing research strategies are highlighted, and the challenges that remain regarding the synthesis, characterization, electrochemical performance and safety of these systems are discussed.
Abstract: Technological improvements in rechargeable solid-state batteries are being driven by an ever-increasing demand for portable electronic devices. Lithium-ion batteries are the systems of choice, offering high energy density, flexible and lightweight design, and longer lifespan than comparable battery technologies. We present a brief historical review of the development of lithium-based rechargeable batteries, highlight ongoing research strategies, and discuss the challenges that remain regarding the synthesis, characterization, electrochemical performance and safety of these systems.

17,496 citations

Journal ArticleDOI
18 Nov 2011-Science
TL;DR: The battery systems reviewed here include sodium-sulfur batteries that are commercially available for grid applications, redox-flow batteries that offer low cost, and lithium-ion batteries whose development for commercial electronics and electric vehicles is being applied to grid storage.
Abstract: The increasing interest in energy storage for the grid can be attributed to multiple factors, including the capital costs of managing peak demands, the investments needed for grid reliability, and the integration of renewable energy sources. Although existing energy storage is dominated by pumped hydroelectric, there is the recognition that battery systems can offer a number of high-value opportunities, provided that lower costs can be obtained. The battery systems reviewed here include sodium-sulfur batteries that are commercially available for grid applications, redox-flow batteries that offer low cost, and lithium-ion batteries whose development for commercial electronics and electric vehicles is being applied to grid storage.

11,144 citations

Journal ArticleDOI
TL;DR: The energy that can be stored in Li-air and Li-S cells is compared with Li-ion; the operation of the cells is discussed, as are the significant hurdles that will have to be overcome if such batteries are to succeed.
Abstract: Li-ion batteries have transformed portable electronics and will play a key role in the electrification of transport. However, the highest energy storage possible for Li-ion batteries is insufficient for the long-term needs of society, for example, extended-range electric vehicles. To go beyond the horizon of Li-ion batteries is a formidable challenge; there are few options. Here we consider two: Li-air (O(2)) and Li-S. The energy that can be stored in Li-air (based on aqueous or non-aqueous electrolytes) and Li-S cells is compared with Li-ion; the operation of the cells is discussed, as are the significant hurdles that will have to be overcome if such batteries are to succeed. Fundamental scientific advances in understanding the reactions occurring in the cells as well as new materials are key to overcoming these obstacles. The potential benefits of Li-air and Li-S justify the continued research effort that will be needed.

7,895 citations

Journal ArticleDOI
TL;DR: The phytochemical properties of Lithium Hexafluoroarsenate and its Derivatives are as follows: 2.2.1.
Abstract: 2.1. Solvents 4307 2.1.1. Propylene Carbonate (PC) 4308 2.1.2. Ethers 4308 2.1.3. Ethylene Carbonate (EC) 4309 2.1.4. Linear Dialkyl Carbonates 4310 2.2. Lithium Salts 4310 2.2.1. Lithium Perchlorate (LiClO4) 4311 2.2.2. Lithium Hexafluoroarsenate (LiAsF6) 4312 2.2.3. Lithium Tetrafluoroborate (LiBF4) 4312 2.2.4. Lithium Trifluoromethanesulfonate (LiTf) 4312 2.2.5. Lithium Bis(trifluoromethanesulfonyl)imide (LiIm) and Its Derivatives 4313

5,710 citations

Journal ArticleDOI
TL;DR: The Review will consider some of the current scientific issues underpinning lithium batteries and electric double-layer capacitors.
Abstract: Energy-storage technologies, including electrical double-layer capacitors and rechargeable batteries, have attracted significant attention for applications in portable electronic devices, electric vehicles, bulk electricity storage at power stations, and “load leveling” of renewable sources, such as solar energy and wind power. Transforming lithium batteries and electric double-layer capacitors requires a step change in the science underpinning these devices, including the discovery of new materials, new electrochemistry, and an increased understanding of the processes on which the devices depend. The Review will consider some of the current scientific issues underpinning lithium batteries and electric double-layer capacitors.

2,412 citations