scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Recent advances in the electrolytes for interfacial stability of high-voltage cathodes in lithium-ion batteries

01 Jan 2015-RSC Advances (The Royal Society of Chemistry)-Vol. 5, Iss: 4, pp 2732-2748
TL;DR: In this article, the authors describe several challenges for the cathode (spinel lithium manganese oxide (LMO), lithium cobalt oxide (LCO), lithium nickel cobalt manganes oxide (NCM), spinel lithium ion ion oxide (SILO), and lithium-rich layered oxide (Li-rich cathode))-electrolyte interfaces and highlight the recent progress in the use of oxidative additives and highvoltage solvents in high-performance cells.
Abstract: Advanced electrolytes with unique functions such as in situ formation of a stable artificial solid electrolyte interphase (SEI) layer on the anode and the cathode, and the improvement in oxidation stability of the electrolyte have recently gained recognition as a promising means for highly reliable lithium-ion batteries with high energy density. In this review, we describe several challenges for the cathode (spinel lithium manganese oxide (LMO), lithium cobalt oxide (LCO), lithium nickel cobalt manganese oxide (NCM), spinel lithium manganese nickel oxide (LNMO), and lithium-rich layered oxide (Li-rich cathode))-electrolyte interfaces and highlight the recent progress in the use of oxidative additives and high-voltage solvents in high-performance cells.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: In this article, LiCoO2-coated Li-ion full-cell was shown to have a high energy-density of ≈ 2 W h cc−1 after 100 cycles at 25 °C and 4.47 V (vs natural graphite).
Abstract: Battery industries and research groups are further investigating LiCoO2 to unravel the capacity at high-voltages (>4.3 vs Li). The research trends are towards the surface modification of the LiCoO2 and stabilize it structurally and chemically. In this report, the recent progress in the surface-coating materials i.e., single-element, binary, and ternary hybrid-materials etc. and their coating methods are illustrated. Further, the importance of evaluating the surface-coated LiCoO2 in the Li-ion full-cell is highlighted with our recent results. Mg,P-coated LiCoO2 full-cells exhibit excellent thermal stability, high-temperature cycle and room-temperature rate capabilities with high energy-density of ≈1.4 W h cc−1 at 10 C and 4.35 V. Besides, pouch-type full-cells with high-loading (18 mg cm−2) electrodes of layered-Li(Ni,Mn)O2 -coated LiCoO2 not only deliver prolonged cycle-life at room and elevated-temperatures but also high energy-density of ≈2 W h cc−1 after 100 cycles at 25 °C and 4.47 V (vs natural graphite). The post-mortem analyses and experimental results suggest enhanced electrochemical performances are attributed to the mechanistic behaviour of hybrid surface-coating layers that can mitigate undesirable side reactions and micro-crack formations on the surface of LiCoO2 at the adverse conditions. Hence, the surface-engineering of electrode materials could be a viable path to achieve the high-energy Li-ion cells for future applications.

225 citations

PatentDOI
Yi Cui1, Jin Xie1
10 May 2018-ACS Nano
TL;DR: Atomic layer deposition is used to develop a LiAlF4 solid thin film with robust stability and satisfactory ion conductivity, which is superior to commonly used LiF and AlF3.
Abstract: A coated cathode material includes a cathode active material and an interfacial layer coating the cathode active material. The interfacial layer includes a lithium-containing fluoride which includes at least one additional metal different from lithium.

225 citations

Journal ArticleDOI
TL;DR: A deep mechanistic understanding of LiPF6 -containing electrolyte failure and the action of currently developed additives is demonstrated to enable the rational design of effective scavenging materials and thus allow the fabrication of highly reliable batteries.
Abstract: In conjunction with electrolyte additives used for tuning the interfacial structures of electrodes, functional materials that eliminate or deactivate reactive substances generated by the degradation of LiPF6 -containing electrolytes in lithium-ion batteries offer a wide range of electrolyte formulation opportunities. Herein, the recent advancements in the development of: (i) scavengers with high selectivity and affinity toward unwanted species and (ii) promoters of ion-paired LiPF6 dissociation are highlighted, showing that the utilization of the above additives can effectively mitigate the problem of electrolyte instability that commonly results in battery performance degradation and lifetime shortening. A deep mechanistic understanding of LiPF6 -containing electrolyte failure and the action of currently developed additives is demonstrated to enable the rational design of effective scavenging materials and thus allow the fabrication of highly reliable batteries.

190 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provide an overview of the whole process in lithium-ion battery fabrication from powder to cell formation, and bridge the gap between academic development and industrial manufacturing.
Abstract: Electrode processing plays an important role in advancing lithium-ion battery technologies and has a significant impact on cell energy density, manufacturing cost, and throughput. Compared to the extensive research on materials development, however, there has been much less effort in this area. In this Review, we outline each step in the electrode processing of lithium-ion batteries from materials to cell assembly, summarize the recent progress in individual steps, deconvolute the interplays between those steps, discuss the underlying constraints, and share some prospective technologies. This Review aims to provide an overview of the whole process in lithium-ion battery fabrication from powder to cell formation and bridge the gap between academic development and industrial manufacturing.

167 citations

Journal ArticleDOI
12 Jun 2017-JOM
TL;DR: In this paper, three major aspects for cost reduction are discussed: (1) quality control to minimize scrap rate in cell manufacturing; (2) novel electrode processing and engineering to reduce processing cost and increase energy density and throughputs; and (3) material development and optimization for lithium-ion batteries with high energy density.
Abstract: Reducing cost and increasing energy density are two barriers for widespread application of lithium-ion batteries in electric vehicles. Although the cost of electric vehicle batteries has been reduced by ~70% from 2008 to 2015, the current battery pack cost ($268/kWh in 2015) is still >2 times what the USABC targets ($125/kWh). Even though many advancements in cell chemistry have been realized since the lithium-ion battery was first commercialized in 1991, few major breakthroughs have occurred in the past decade. Therefore, future cost reduction will rely on cell manufacturing and broader market acceptance. This article discusses three major aspects for cost reduction: (1) quality control to minimize scrap rate in cell manufacturing; (2) novel electrode processing and engineering to reduce processing cost and increase energy density and throughputs; and (3) material development and optimization for lithium-ion batteries with high-energy density. Insights on increasing energy and power densities of lithium-ion batteries are also addressed.

167 citations

References
More filters
Journal ArticleDOI
15 Nov 2001-Nature
TL;DR: A brief historical review of the development of lithium-based rechargeable batteries is presented, ongoing research strategies are highlighted, and the challenges that remain regarding the synthesis, characterization, electrochemical performance and safety of these systems are discussed.
Abstract: Technological improvements in rechargeable solid-state batteries are being driven by an ever-increasing demand for portable electronic devices. Lithium-ion batteries are the systems of choice, offering high energy density, flexible and lightweight design, and longer lifespan than comparable battery technologies. We present a brief historical review of the development of lithium-based rechargeable batteries, highlight ongoing research strategies, and discuss the challenges that remain regarding the synthesis, characterization, electrochemical performance and safety of these systems.

17,496 citations

Journal ArticleDOI
18 Nov 2011-Science
TL;DR: The battery systems reviewed here include sodium-sulfur batteries that are commercially available for grid applications, redox-flow batteries that offer low cost, and lithium-ion batteries whose development for commercial electronics and electric vehicles is being applied to grid storage.
Abstract: The increasing interest in energy storage for the grid can be attributed to multiple factors, including the capital costs of managing peak demands, the investments needed for grid reliability, and the integration of renewable energy sources. Although existing energy storage is dominated by pumped hydroelectric, there is the recognition that battery systems can offer a number of high-value opportunities, provided that lower costs can be obtained. The battery systems reviewed here include sodium-sulfur batteries that are commercially available for grid applications, redox-flow batteries that offer low cost, and lithium-ion batteries whose development for commercial electronics and electric vehicles is being applied to grid storage.

11,144 citations

Journal ArticleDOI
TL;DR: The energy that can be stored in Li-air and Li-S cells is compared with Li-ion; the operation of the cells is discussed, as are the significant hurdles that will have to be overcome if such batteries are to succeed.
Abstract: Li-ion batteries have transformed portable electronics and will play a key role in the electrification of transport. However, the highest energy storage possible for Li-ion batteries is insufficient for the long-term needs of society, for example, extended-range electric vehicles. To go beyond the horizon of Li-ion batteries is a formidable challenge; there are few options. Here we consider two: Li-air (O(2)) and Li-S. The energy that can be stored in Li-air (based on aqueous or non-aqueous electrolytes) and Li-S cells is compared with Li-ion; the operation of the cells is discussed, as are the significant hurdles that will have to be overcome if such batteries are to succeed. Fundamental scientific advances in understanding the reactions occurring in the cells as well as new materials are key to overcoming these obstacles. The potential benefits of Li-air and Li-S justify the continued research effort that will be needed.

7,895 citations

Journal ArticleDOI
TL;DR: The phytochemical properties of Lithium Hexafluoroarsenate and its Derivatives are as follows: 2.2.1.
Abstract: 2.1. Solvents 4307 2.1.1. Propylene Carbonate (PC) 4308 2.1.2. Ethers 4308 2.1.3. Ethylene Carbonate (EC) 4309 2.1.4. Linear Dialkyl Carbonates 4310 2.2. Lithium Salts 4310 2.2.1. Lithium Perchlorate (LiClO4) 4311 2.2.2. Lithium Hexafluoroarsenate (LiAsF6) 4312 2.2.3. Lithium Tetrafluoroborate (LiBF4) 4312 2.2.4. Lithium Trifluoromethanesulfonate (LiTf) 4312 2.2.5. Lithium Bis(trifluoromethanesulfonyl)imide (LiIm) and Its Derivatives 4313

5,710 citations

Journal ArticleDOI
TL;DR: The Review will consider some of the current scientific issues underpinning lithium batteries and electric double-layer capacitors.
Abstract: Energy-storage technologies, including electrical double-layer capacitors and rechargeable batteries, have attracted significant attention for applications in portable electronic devices, electric vehicles, bulk electricity storage at power stations, and “load leveling” of renewable sources, such as solar energy and wind power. Transforming lithium batteries and electric double-layer capacitors requires a step change in the science underpinning these devices, including the discovery of new materials, new electrochemistry, and an increased understanding of the processes on which the devices depend. The Review will consider some of the current scientific issues underpinning lithium batteries and electric double-layer capacitors.

2,412 citations