scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Recent advances in the electrolytes for interfacial stability of high-voltage cathodes in lithium-ion batteries

01 Jan 2015-RSC Advances (The Royal Society of Chemistry)-Vol. 5, Iss: 4, pp 2732-2748
TL;DR: In this article, the authors describe several challenges for the cathode (spinel lithium manganese oxide (LMO), lithium cobalt oxide (LCO), lithium nickel cobalt manganes oxide (NCM), spinel lithium ion ion oxide (SILO), and lithium-rich layered oxide (Li-rich cathode))-electrolyte interfaces and highlight the recent progress in the use of oxidative additives and highvoltage solvents in high-performance cells.
Abstract: Advanced electrolytes with unique functions such as in situ formation of a stable artificial solid electrolyte interphase (SEI) layer on the anode and the cathode, and the improvement in oxidation stability of the electrolyte have recently gained recognition as a promising means for highly reliable lithium-ion batteries with high energy density. In this review, we describe several challenges for the cathode (spinel lithium manganese oxide (LMO), lithium cobalt oxide (LCO), lithium nickel cobalt manganese oxide (NCM), spinel lithium manganese nickel oxide (LNMO), and lithium-rich layered oxide (Li-rich cathode))-electrolyte interfaces and highlight the recent progress in the use of oxidative additives and high-voltage solvents in high-performance cells.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: This review gives an account of the various emerging high-voltage positive electrode materials that have the potential to satisfy the requirements of lithium-ion batteries either in the short or long term, including nickel-rich layered oxides, lithium- rich layeredOxides, high- voltage spinel oxide compounds, and high- voltage polyanionic compounds.
Abstract: The ever-growing demand for advanced rechargeable lithium-ion batteries in portable electronics and electric vehicles has spurred intensive research efforts over the past decade. The key to sustaining the progress in Li-ion batteries lies in the quest for safe, low-cost positive electrode (cathode) materials with desirable energy and power capabilities. One approach to boost the energy and power densities of batteries is to increase the output voltage while maintaining a high capacity, fast charge–discharge rate, and long service life. This review gives an account of the various emerging high-voltage positive electrode materials that have the potential to satisfy these requirements either in the short or long term, including nickel-rich layered oxides, lithium-rich layered oxides, high-voltage spinel oxides, and high-voltage polyanionic compounds. The key barriers and the corresponding strategies for the practical viability of these cathode materials are discussed along with the optimization of electrolytes and other cell components, with a particular emphasis on recent advances in the literature. A concise perspective with respect to plausible strategies for future developments in the field is also provided.

877 citations

Journal ArticleDOI
TL;DR: This Review gives an overview of the various functional additives that are being applied in lithium metal rechargeable batteries and aims to stimulate new avenues for the practical realization of these appealing devices.
Abstract: Lithium metal (Li0 ) rechargeable batteries (LMBs), such as systems with a Li0 anode and intercalation and/or conversion type cathode, lithium-sulfur (Li-S), and lithium-oxygen (O2 )/air (Li-O2 /air) batteries, are becoming increasingly important for electrifying the modern transportation system, with the aim of sustainable mobility. Although some rechargeable LMBs (e.g. Li0 /LiFePO4 batteries from Bollore Bluecar, Li-S batteries from OXIS Energy and Sion Power) are already commercially viable in niche applications, their large-scale deployment is hampered by a number of formidable challenges, including growth of lithium dendrites, electrolyte instability towards high voltage intercalation-type cathodes, the poor electronic and ionic conductivities of sulfur (S8 ) and O2 , as well as their corresponding reduction products (e.g. Li2 S and Li2 O), dissolution, and shuttling of polysulfide (PS) intermediates. This leads to a short lifecycle, low coulombic/energy efficiency, poor safety, and a high self-discharge rate. The use of electrolyte additives is considered one of the most economical and effective approaches for circumventing these problems. This Review gives an overview of the various functional additives that are being applied and aims to stimulate new avenues for the practical realization of these appealing devices.

475 citations

References
More filters
Journal ArticleDOI
TL;DR: In this paper, LiNi 0.5 Mn 1.5 O 4 and MCMB electrodes for 5-V Li-ion batteries were investigated at elevated temperatures using a variety of electrochemical (CV, EIS) and spectroscopic tools.

222 citations

Journal ArticleDOI
TL;DR: In this article, a series of cyclic or acyclic sulfones have been synthesized and evaluated as electrolyte solvents for lithium (ion) batteries, and the physical and electrochemical properties of these new compounds were summarized.
Abstract: A series of cyclic or acyclic sulfones have been synthesized and evaluated as electrolyte solvents for lithium (ion) batteries. This report summarizes the physical and electrochemical properties of these new compounds. It is found that, while the anodic stability of these solvents is independent of the sulfone structure, i.e., no oxidative decomposition is observed before 5.5 V vs. Li in any sulfone, the structure of their alkyl substituents dictates their compatibility with graphitic anodes. In the most favorable cases, this compatibility is comparable with that found with carbonate-based electrolytes. Fluorination of alkyl groups in the sulfone seems to help in forming a stable solid electrolyte interface on the anode, while also improving the conductivity. Initial tests of these cells containing such electrolyte solvents show promising performance.

215 citations

Journal ArticleDOI
TL;DR: In this paper, the authors review recent progress on Si-based nanowires and nanotubes as high capacity anode materials and discuss the fundamental understanding and future challenges on one dimensional nanostructured anode.
Abstract: There has been tremendous interest in using nanomaterials for advanced Li-ion battery electrodes, particularly to increase the energy density by using high specific capacity materials. Recently, it was demonstrated that one dimensional (1D) Si/Sn nanowires (NWs) and nanotubes (NTs) have great potential to achieve high energy density as well as long cycle life for the next generation of advanced energy storage applications. In this feature article, we review recent progress on Si-based NWs and NTs as high capacity anode materials. Fundamental understanding and future challenges on one dimensional nanostructured anode are also discussed.

203 citations

Journal ArticleDOI
TL;DR: In this article, the authors evaluated ADN as both a solvent and cosolvent in safer and more electrochemically stable electrolytes suitable for high energy and power density Li-ion batteries.
Abstract: Adiponitrile, CN CH2 4CN, ADN, was evaluated as both a solvent and cosolvent in safer and more electrochemically stable electrolytes suitable for high energy and power density Li-ion batteries. An electrochemical investigation of its electrolyte solution with the Li CF3SO2 2N, LiTFSI, salt showed a wide electrochemical window of 6 V vs Li+/Li. The high melting point and the incompatibility of ADN with graphite anode required the use of ethylene carbonate EC as a cosolvent. The resultant EC:ADN electrolyte solutions showed ionic conductivities reaching 3.4 mS/cm, viscosities of 9.2 cP, and an improved resistance to aluminum corrosion up to 4.4 V, all at 20°C. Li-ion batteries incorporating graphite/LiCoO2 electrodes were assembled using EC:ADN electrolyte mixture containing 1 M LiTFSI and 0.1 M LiBOB as a cosalt, and discharge capacities of 108 mAh/g with very good capacity retention were obtained. AC impedance spectra of the batteries recorded as a function of charging and cycling indicated the presence of a stable solid electrolyte interface. © 2008 The Electrochemical Society. DOI: 10.1149/1.3023084 All rights reserved.

197 citations

Journal ArticleDOI
TL;DR: In this article, the synthesis of "layered-layered" integrated xLi 2 Mno 3 ·(1 ― x)LiMn 1/3 Ni1/3 Co 1/ 3 O 2 materials (x = 0.3, 0.5, and 0.7) using the self-combustion reaction in solutions containing metal nitrates and sucrose was reported.
Abstract: We report herein on the synthesis of "layered-layered" integrated xLi 2 Mno 3 ·(1 ― x)LiMn 1/3 Ni 1/3 Co 1/3 O 2 materials (x = 0.3, 0.5, and 0.7) using the self-combustion reaction in solutions containing metal nitrates and sucrose. The nanoparticles of these materials were obtained by further annealing of the as-prepared product in air at 700°C for 1 h and submicrometric particles were obtained by further annealing at 900°C for 22 h. The effect of composition on the electrochemical performance was explored in this work. By a rigorous study with high resolution transmission electron microscopy (HRTEM), it became clear that the syntheses with the above stoichiometries produce two-phase materials comprising nanodomains of both rhombohedral LiNiO 2 -like and monoclinic Li 2 MnO 3 structures, which are closely integrated and interconnected with one another at the atomic level. Stable reversible capacities ∼220 mAh/g were obtained with composite electrodes containing submicrometer particles of 0.5Li 2 MnO 3 ·0.5LiMn 1/3 Ni 1/3 Co 1/3 O 2 . Structural aspects, activation of the monoclinic component, and stabilization mechanisms are thoroughly discussed using Raman spectroscopy, solid-state NMR, HRTEM, and X-ray diffraction (including Rietveld analysis) in conjunction with electrochemical measurements. This work provides a further indication that this family of integrated compounds contains the most promising cathode materials for high energy density Li-ion batteries.

189 citations