scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Recent Advances in Wearable Antenna Technologies: A Review

TL;DR: In this paper, the authors address the numerous problems and obstacles in the production of wearable antennas, their variety of materials, and the techniques of manufacturing alongside with bending scheme, and provide a summary of creative features and their respective approaches to address these problems.
Abstract: Wearable antennas have received a great deal of popularity in recent years owing to their enticing characteristics and opportunities to realize lightweight, compact, low-cost, and versatile wireless communications and environments. These antennas must be conformal, and they must be built using lightweight materials and constructed in a low-profile configuration when mounted on various areas of the human body. These antennas ought to be able to function close to the human body with limited deterioration. These criteria render the layout of wearable antennas demanding, particularly when considering factors such as investigating the usability of textile substrates, high conductive materials during fabrication processes, and the effect of body binding scenarios on the performance of the design. Although there are minor differences in magnitude based on the implementations, several of these problems occur in the body-worn deployment sense. This study addresses the numerous problems and obstacles in the production of wearable antennas, their variety of materials, and the techniques of manufacturing alongside with bending scheme. This is accompanied by a summary of creative features and their respective approaches to address these problems recently raised by work in this area by the science community. © 2020. All Rights Reserved.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: In this paper , the authors summarized the motivation and potential of the 6G communication system and discussed its key features, and the current state-of-the-art of 5G antenna technology, which includes existing 5G antennas and arrays and 5G wearable antennas, are summarized.
Abstract: Next-generation communication systems and wearable technologies aim to achieve high data rates, low energy consumption, and massive connections because of the extensive increase in the number of Internet-of-Things (IoT) and wearable devices. These devices will be employed for many services such as cellular, environment monitoring, telemedicine, biomedical, and smart traffic, etc. Therefore, it is challenging for the current communication devices to accommodate such a high number of services. This article summarizes the motivation and potential of the 6G communication system and discusses its key features. Afterward, the current state-of-the-art of 5G antenna technology, which includes existing 5G antennas and arrays and 5G wearable antennas, are summarized. The article also described the useful methods and techniques of exiting antenna design works that could mitigate the challenges and concerns of the emerging 5G and 6G applications. The key features and requirements of the wearable antennas for next-generation technology are also presented at the end of the paper.

37 citations

Peer Review
TL;DR: The motivation and potential of the 6G communication system is summarized and its key features are discussed and the useful methods and techniques of exiting antenna design works that could mitigate the challenges and concerns of the emerging 5G and 6G applications are described.
Abstract: Next-generation communication systems and wearable technologies aim to achieve high data rates, low energy consumption, and massive connections because of the extensive increase in the number of Internet-of-Things (IoT) and wearable devices. These devices will be employed for many services such as cellular, environment monitoring, telemedicine, biomedical, and smart traffic, etc. Therefore, it is challenging for the current communication devices to accommodate such a high number of services. This article summarizes the motivation and potential of the 6G communication system and discusses its key features. Afterward, the current state-of-the-art of 5G antenna technology, which includes existing 5G antennas and arrays and 5G wearable antennas, are summarized. The article also described the useful methods and techniques of exiting antenna design works that could mitigate the challenges and concerns of the emerging 5G and 6G applications. The key features and requirements of the wearable antennas for next-generation technology are also presented at the end of the paper.

33 citations

Proceedings ArticleDOI
22 Oct 2020
TL;DR: The major sections which are discussed in this paper are UWB technologies, on-off body communication; WBAN ideas are discussed to overcome several research drawbacks.
Abstract: The high demand use of Ultra-Wideband (UWB) in wireless body area network (WBAN) based medical applications opens a way for many types of research in the current decade. The continuous health monitoring of the patients during normal daily activities is the primary concentration of the WBAN system. Many studies and analyses are taken into and performance is evaluated. The major sections which are discussed in this paper are UWB technologies, on-off body communication; WBAN ideas are discussed to overcome several research drawbacks.

9 citations

Journal ArticleDOI
28 Jan 2022-Sensors
TL;DR: In this paper , a textile realization of a slotted waveguide antenna is proposed, where the antenna is realized using conductive fabric to manufacture the walls of a rectangular waveguide in which the slots were cut out.
Abstract: One of the major challenges in the development of wearable antennas is to design an antenna that can at the same time satisfy technical requirements, be aesthetically acceptable, and be suitable for wearable applications. In this paper, a novel wearable antenna is proposed—textile realization of a slotted waveguide antenna. The antenna is realized using conductive fabric to manufacture the walls of a rectangular waveguide in which the slots were cut out. All connections and cuts are sewn with conductive thread taking over advantages of the traditional process of manufacturing textile objects. The developed slotted waveguide array prototype, containing three slots and designed for operation in the 5.8-GHz ISM band, is experimentally characterized and compared to an equivalent metallic antenna. The achieved operating bandwidth is larger than 300 MHz in both cases. The measured gain of a textile slotted waveguide array is around 9 dBi with a radiation efficiency larger than 50% in the whole operating bandwidth, i.e., the textile array showed a 2 dB lower gain in comparison to the metallic counterpart. The gain is stable in the whole bandwidth and the radiation patterns do not differ. The results demonstrated that such textile antennas are suitable for body-centric communication and sensor systems and can be integrated into clothing, e.g., into a smart safety vest or into a uniform. Further analysis of various realizations of slotted waveguide antennas is presented showing that different versions of the proposed antenna can be used in all three off-body, on-body, and in-body communication scenarios.

6 citations

References
More filters
Book
31 Oct 2000
TL;DR: Feeding Techniques and Modeling, Design and Analysis of Microstrip Antenna Arrays: Parallel and Series Feed Systems, and Theory and Design of Active Integrated Micro Strip Antenna Amplifiers.
Abstract: Microstrip Radiators: Various Microstrip Antenna Configurations. Feeding Techniques and Modeling. Applications. Radiation Field. Surface Waves and Photonic Band-Gap Structures. Analytical Models for Microstrip Antennas: Transmission Line Model. Cavity Model. Generalized Cavity Model. Multi-port Network Model (MNM). Radiation Fields. Aperture Admittance. Mutual Admittance. Model for Coaxial Probe in Microstrip Antennas. Comparison of Analytical Models. Full-Wave Analysis of Microstrip Antennas: Spectral Domain Full-Wave Analysis. Mixed-Potential Integral Equation Analysis. Finite-Difference Time Domain Analysis.Rectangular Microstrip Antenna: Models for Rectangular Patch Antenna. Design Considerations for Rectangular Patch Antennas. Tolerance Analysis of Rectangular Microstrip Antennas. Mechanical Tuning of Patch Antennas. Quarter-wave Rectangular Patch Antenna. Circular Disk and Ring Antennas: Analysis of a Circular Disk Microstrip Antenna. Design Considerations for Circular Disk Antennas. Semicircular Disk and Circular Sector Microstrip Antennas. Comparison Of Rectangular And Circular Disk Microstrip Antennas. Circular Ring or Annular Ring Microstrip Antenna. Circular Sector Microstrip Ring Antenna. Microstrip Ring Antennas of Non-Circular Shapes. Dipoles and Triangular Patch Antennas: Microstrip Dipole and Center-Fed Dipoles. Triangular Microstrip Patch Antenna. Design of an Equilateral Triangular Patch Antenna. Microstrip Slot Antennas: Microstrip-Fed Rectangular Slot Antennas. CPW-Fed Slot Antennas. Annular Slot Antennas. Tapered Slot Antennas (TSA). Comparison of Slot Antennas with Microstrip Antennas. Circularly Polarized Microstrip Antennas and Techniques: Various Types of Circularly Polarized Microstrip Antennas. Singly-Fed Circularly Polarized Microstrip Antennas. Dual-Orthagonal Feed Circularly Polarized Microstrip Antennas. Circularly Polarized Traveling-Wave Microstrip-Line Arrays. Bandwidth Enhancement Techniques. Sequentially Rotated Arrays. Broad-Banding of Microstrip Antennas: Effect of Substrate Parameters on Bandwidth. Selection of Suitable Patch Shape. Selection of Suitable Feeding Technique. Multi-Moding Techniques. Other Broadbanding Techniques. Multifrequency Operation. Loaded Microstrip Antennas and Applications: Polarization Diversity Using Microstrip Antennas. Frequency Agile Microstrip Antennas. Radiation Pattern Control of Microstrip Antennas. Loading Effect of a Short. Compact Patch Antennas. Planar Inverted F Antenna. Dual-Frequency Microstrip Antennas. Dual-Frequency Compact Microstrip Antennas. Active Integrated Microstrip Antennas: Classification of Active Integrated Microstrip Antennas. Theory and Design of Active Integrated Microstrip Antenna Oscillators. Theory and Design of Active Integrated Microstrip Antenna Amplifiers. Frequency Conversion Active Integrated Microstrip Antenna Theory and Design. Design and Analysis of Microstrip Antenna Arrays: Parallel and Series Feed Systems. Mutual Coupling. Design of Linear Arrays. Design of Planar Arrays. Monolithic Integrated Phased Arrays.

3,612 citations


"Recent Advances in Wearable Antenna..." refers background in this paper

  • ...The three primary ones being: simplicity of design, cost-effectiveness, and the relative separation provided by the ground plane between the radiating component and the surface, which results in a substantial reduction in the energy consumed by the skin [14]....

    [...]

Journal ArticleDOI
TL;DR: When silvery films of the semiconducting polymer, trans polyacetylene, (CH)x, are exposed to chlorine, bromine, or iodine vapour, uptake of halogen occurs, and the conductivity increases markedly (over seven orders of magnitude in the case of iodine) to give silvery or silvery-black films, some of which have a remarkably high conductivity at room temperature.
Abstract: When silvery films of the semiconducting polymer, trans‘polyacetylene’, (CH)x, are exposed to chlorine, bromine, or iodine vapour, uptake of halogen occurs, and the conductivity increases markedly (over seven orders of magnitude in the case of iodine) to give, depending on the extent of halogenation, silvery or silvery-black films, some of which have a remarkably high conductivity at room temperature.

3,197 citations


"Recent Advances in Wearable Antenna..." refers background in this paper

  • ...The e-textile invention went back to the 20th century and started largely as a consequence of the production of a conductive polymer by [28] in 1977, for which he won the Nobel Prize thirty-three years ago....

    [...]

Journal ArticleDOI
TL;DR: In this article, the authors report an investigation of the variation in the mechanical properties of bulk polydimethylsiloxane (PDMS) elastomers with curing temperature, over the range 25 ◦ C to 200 ¼ C, over a range up to 40% strain and hardness of 44−54 ShA.
Abstract: Polydimethylsiloxane (PDMS) elastomers are extensively used for soft lithographic replication of microstructures in microfluidic and micro-engineering applications. Elastomeric microstructures are commonly required to fulfil an explicit mechanical role and accordingly their mechanical properties can critically affect device performance. The mechanical properties of elastomers are known to vary with both curing and operational temperatures. However, even for the elastomer most commonly employed in microfluidic applications, Sylgard 184, only a very limited range of data exists regarding the variation in mechanical properties of bulk PDMS with curing temperature. We report an investigation of the variation in the mechanical properties of bulk Sylgard 184 with curing temperature, over the range 25 ◦ C to 200 ◦ C. PDMS samples for tensile and compressive testing were fabricated according to ASTM standards. Data obtained indicates variation in mechanical properties due to curing temperature for Young’s modulus of 1.32‐2.97 MPa, ultimate tensile strength of 3.51‐7.65 MPa, compressive modulus of 117.8‐186.9 MPa and ultimate compressive strength of 28.4‐51.7 GPa in a range up to 40% strain and hardness of 44‐54 ShA.

1,218 citations


"Recent Advances in Wearable Antenna..." refers background in this paper

  • ...The usage of polymers, especially the polydimethylsiloxane (PDMS) type, has been labeled as one of the most important methods, owing to its peculiar features such as exceptional strength, water resistance, heat, and mechanical resilience, which are necessary for convenient wearing and extended utilization [105, 106]....

    [...]

Journal ArticleDOI
TL;DR: The feasibility of detecting and localizing small (<1 cm) tumors in three dimensions with numerical models of two system configurations involving synthetic cylindrical and planar antenna arrays with image formation algorithms developed to enhance tumor responses and reduce early- and late-time clutter are demonstrated.
Abstract: The physical basis for breast tumor detection with microwave imaging is the contrast in dielectric properties of normal and malignant breast tissues. Confocal microwave imaging involves illuminating the breast with an ultra-wideband pulse from a number of antenna locations, then synthetically focusing reflections from the breast. The detection of malignant tumors is achieved by the coherent addition of returns from these strongly scattering objects. In this paper, we demonstrate the feasibility of detecting and localizing small (<1 cm) tumors in three dimensions with numerical models of two system configurations involving synthetic cylindrical and planar antenna arrays. Image formation algorithms are developed to enhance tumor responses and reduce early- and late-time clutter. The early-time clutter consists of the incident pulse and reflections from the skin, while the late-time clutter is primarily due to the heterogeneity of breast tissue. Successful detection of 6-mm-diameter spherical tumors is achieved with both planar and cylindrical systems, and similar performance measures are obtained. The influences of the synthetic array size and position relative to the tumor are also explored.

884 citations

Journal ArticleDOI
TL;DR: The current research in wearable is examined to serve as references for researchers and provide perspectives for future research, focusing on multi-parameter physiological sensor systems and activity and mobility measurement system designs that reliably measure mobility or vital signs and integrate real-time decision support processing for disease prevention, symptom detection, and diagnosis.

765 citations


"Recent Advances in Wearable Antenna..." refers background in this paper

  • ...These are not restricted to wristwatches, exercise shoes, virtual reality glasses, and include other medical devices as well [2, 3]....

    [...]