scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Recent development of sulfide solid electrolytes and interfacial modification for all-solid-state rechargeable lithium batteries

01 Mar 2013-Journal of Asian Ceramic Societies (Taylor & Francis)-Vol. 1, Iss: 1, pp 17-25
TL;DR: In this paper, the development of inorganic sulfide solid electrolytes and all-solid-state rechargeable lithium batteries with them is reviewed, including electrical conductivity, electrochemical stability and chemical properties.
About: This article is published in Journal of Asian Ceramic Societies.The article was published on 2013-03-01 and is currently open access. It has received 370 citations till now. The article focuses on the topics: Lithium & Fast ion conductor.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the authors reviewed the current state of all solid-state lithium batteries with major focus on the material aspects, including inorganic ceramic and organic solid polymer electrolyte materials, and emphasized the importance of the electrolytes and their associated interfaces with electrodes as well as their effects on the battery performance.

1,217 citations

Journal ArticleDOI
TL;DR: In this article, the thermodynamics of formation of resistive interfacial phases are examined and the predicted interfacial phase formation is well correlated with experimental interfacial observations and battery performance.
Abstract: Development of high conductivity solid-state electrolytes for lithium ion batteries has proceeded rapidly in recent years, but incorporating these new materials into high-performing batteries has proven difficult. Interfacial resistance is now the limiting factor in many systems, but the exact mechanisms of this resistance have not been fully explained - in part because experimental evaluation of the interface can be very difficult. In this work, we develop a computational methodology to examine the thermodynamics of formation of resistive interfacial phases. The predicted interfacial phase formation is well correlated with experimental interfacial observations and battery performance. We calculate that thiophosphate electrolytes have especially high reactivity with high voltage cathodes and a narrow electrochemical stability window. We also find that a number of known electrolytes are not inherently stable but react in situ with the electrode to form passivating but ionically conducting barrier layers. A...

1,035 citations

Journal ArticleDOI
TL;DR: A survey of emerging SSEs is presented, a perspective on the current challenges and opportunities is provided, and suggestions for future research directions for S SEs and ASSLBs are suggested.
Abstract: All-solid-state lithium batteries (ASSLBs) have the potential to revolutionize battery systems for electric vehicles due to their benefits in safety, energy density, packaging, and operable temperature range. As the key component in ASSLBs, inorganic lithium-ion-based solid-state electrolytes (SSEs) have attracted great interest, and advances in SSEs are vital to deliver the promise of ASSLBs. Herein, a survey of emerging SSEs is presented, and ion-transport mechanisms are briefly discussed. Techniques for increasing the ionic conductivity of SSEs, including substitution and mechanical strain treatment, are highlighted. Recent advances in various classes of SSEs enabled by different preparation methods are described. Then, the issues of chemical stabilities, electrochemical compatibility, and the interfaces between electrodes and SSEs are focused on. A variety of research addressing these issues is outlined accordingly. Given their importance for next-generation battery systems and transportation style, a perspective on the current challenges and opportunities is provided, and suggestions for future research directions for SSEs and ASSLBs are suggested.

809 citations

Journal ArticleDOI
TL;DR: In this paper, a review of the state of the art in solid lithium and sodium ion conductors, with an emphasis on inorganic materials, is presented, where correlations between the composition, structure and conductivity of these solid electrolytes are illustrated and strategies to boost ion conductivity are proposed.
Abstract: Among the contenders in the new generation energy storage arena, all-solid-state batteries (ASSBs) have emerged as particularly promising, owing to their potential to exhibit high safety, high energy density and long cycle life. The relatively low conductivity of most solid electrolytes and the often sluggish charge transfer kinetics at the interface between solid electrolyte and electrode layers are considered to be amongst the major challenges facing ASSBs. This review presents an overview of the state of the art in solid lithium and sodium ion conductors, with an emphasis on inorganic materials. The correlations between the composition, structure and conductivity of these solid electrolytes are illustrated and strategies to boost ion conductivity are proposed. In particular, the high grain boundary resistance of solid oxide electrolytes is identified as a challenge. Critical issues of solid electrolytes beyond ion conductivity are also discussed with respect to their potential problems for practical applications. The chemical and electrochemical stabilities of solid electrolytes are discussed, as are chemo-mechanical effects which have been overlooked to some extent. Furthermore, strategies to improve the practical performance of ASSBs, including optimizing the interface between solid electrolytes and electrode materials to improve stability and lower charge transfer resistance are also suggested.

793 citations

Journal ArticleDOI
TL;DR: A comprehensive review of all aspects of solid state batteries: their design, the materials used, and a detailed literature review of various important advances made in research is provided in this article.

562 citations

References
More filters
Journal ArticleDOI
15 Nov 2001-Nature
TL;DR: A brief historical review of the development of lithium-based rechargeable batteries is presented, ongoing research strategies are highlighted, and the challenges that remain regarding the synthesis, characterization, electrochemical performance and safety of these systems are discussed.
Abstract: Technological improvements in rechargeable solid-state batteries are being driven by an ever-increasing demand for portable electronic devices. Lithium-ion batteries are the systems of choice, offering high energy density, flexible and lightweight design, and longer lifespan than comparable battery technologies. We present a brief historical review of the development of lithium-based rechargeable batteries, highlight ongoing research strategies, and discuss the challenges that remain regarding the synthesis, characterization, electrochemical performance and safety of these systems.

17,496 citations

Journal ArticleDOI
06 Feb 2008-Nature
TL;DR: Researchers must find a sustainable way of providing the power their modern lifestyles demand to ensure the continued existence of clean energy sources.
Abstract: Researchers must find a sustainable way of providing the power our modern lifestyles demand.

15,980 citations

Journal ArticleDOI
TL;DR: A lithium superionic conductor, Li(10)GeP(2)S(12) that has a new three-dimensional framework structure that exhibits an extremely high lithium ionic conductivity of 12 mS cm(-1) at room temperature, which represents the highest conductivity achieved in a solid electrolyte, exceeding even those of liquid organic electrolytes.
Abstract: Batteries are a key technology in modern society. They are used to power electric and hybrid electric vehicles and to store wind and solar energy in smart grids. Electrochemical devices with high energy and power densities can currently be powered only by batteries with organic liquid electrolytes. However, such batteries require relatively stringent safety precautions, making large-scale systems very complicated and expensive. The application of solid electrolytes is currently limited because they attain practically useful conductivities (10(-2) S cm(-1)) only at 50-80 °C, which is one order of magnitude lower than those of organic liquid electrolytes. Here, we report a lithium superionic conductor, Li(10)GeP(2)S(12) that has a new three-dimensional framework structure. It exhibits an extremely high lithium ionic conductivity of 12 mS cm(-1) at room temperature. This represents the highest conductivity achieved in a solid electrolyte, exceeding even those of liquid organic electrolytes. This new solid-state battery electrolyte has many advantages in terms of device fabrication (facile shaping, patterning and integration), stability (non-volatile), safety (non-explosive) and excellent electrochemical properties (high conductivity and wide potential window).

3,372 citations

Journal ArticleDOI
TL;DR: Li-S batteries have received everincreasing attention recently due to their high theoretical specific energy density, which is 3 to 5 times higher than that of Li ion batteries based on intercalation reactions as discussed by the authors.
Abstract: Rechargeable Li–S batteries have received ever-increasing attention recently due to their high theoretical specific energy density, which is 3 to 5 times higher than that of Li ion batteries based on intercalation reactions. Li–S batteries may represent a next-generation energy storage system, particularly for large scale applications. The obstacles to realize this high energy density mainly include high internal resistance, self-discharge and rapid capacity fading on cycling. These challenges can be met to a large degree by designing novel sulfur electrodes with “smart” nanostructures. This highlight provides an overview of major developments of positive electrodes based on this concept.

1,731 citations