scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Recent developments in the emerging field of crystalline p-type transparent conducting oxide thin films

TL;DR: In this article, the origin of p-type conductivity in transparent oxides is discussed and an up-to-date and comprehensive description of different P-type transparent conducting oxide thin films is presented.
About: This article is published in Progress in Crystal Growth and Characterization of Materials.The article was published on 2005-01-01. It has received 328 citations till now.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, a review of the state-of-the-art work on nanostructures of metal oxides is presented, focusing on the physical and chemical properties of low-dimensional oxide materials.

843 citations

Journal ArticleDOI
TL;DR: A high-throughput computational search on thousands of binary and ternary oxides identifies several highly promising compounds displaying exceptionally low hole effective masses (up to an order of magnitude lower than state-of-the-art p-type transparent conducting oxides), as well as wide band gaps.
Abstract: The development of high-performance transparent conducting oxides is critical to many technologies from transparent electronics to solar cells. Whereas n-type transparent con- ducting oxides are present in many devices, their p-type counterparts are not largely com- mercialized, as they exhibit much lower carrier mobilities due to the large hole effective masses of most oxides. Here we conduct a high-throughput computational search on thousands of binary and ternary oxides and identify several highly promising compounds displaying exceptionally low hole effective masses (up to an order of magnitude lower than state-of-the-art p-type transparent conducting oxides), as well as wide band gaps. In addition to the discovery of specific compounds, the chemical rationalization of our findings opens new directions, beyond current Cu-based chemistries, for the design and development of future p-type transparent conducting oxides.

495 citations

Journal ArticleDOI
TL;DR: This critical review focuses on the solution deposition of transparent conductors with a particular focus on transparent conducting oxide (TCO) thin-films, with an introduction into the applications of and material criteria for TCOs.
Abstract: This critical review focuses on the solution deposition of transparent conductors with a particular focus on transparent conducting oxide (TCO) thin-films TCOs play a critical role in many current and emerging opto-electronic devices due to their unique combination of electronic conductivity and transparency in the visible region of the spectrum Atmospheric-pressure solution processing is an attractive alternative to conventional vacuum-based deposition methods due to its ease of fabrication, scalability, and potential to lower device manufacturing costs An introduction into the applications of and material criteria for TCOs will be presented first, followed by a discussion of solution routes to these systems Recent studies in the field will be reviewed according to their materials system Finally, the challenges and opportunities for further enabling research will be discussed in terms of emerging oxide systems and non-oxide based transparent conductors (341 references)

347 citations

Journal ArticleDOI
TL;DR: The properties of TCO materials derive from the nature, number, and atomic arrangements of metal cations in crystalline or amorphous oxide structures, from the resident morphology, and from the presence of intrinsic or intentionally introduced defects.

336 citations

References
More filters
Journal ArticleDOI
16 Feb 1996-Science
TL;DR: In this article, the authors focus on the properties of quantum dots and their ability to join the dots into complex assemblies creates many opportunities for scientific discovery, such as the ability of joining the dots to complex assemblies.
Abstract: Current research into semiconductor clusters is focused on the properties of quantum dots-fragments of semiconductor consisting of hundreds to many thousands of atoms-with the bulk bonding geometry and with surface states eliminated by enclosure in a material that has a larger band gap. Quantum dots exhibit strongly size-dependent optical and electrical properties. The ability to join the dots into complex assemblies creates many opportunities for scientific discovery.

10,737 citations

Journal ArticleDOI
TL;DR: In this paper, the excited electronic states of semiconductor crystallites sufficiently small (∼50 A diam) that the electronic properties differ from those of bulk materials were modeled, and an approximate formula was given for the lowest excited electronic state energy.
Abstract: We model, in an elementary way, the excited electronic states of semiconductor crystallites sufficiently small (∼50 A diam) that the electronic properties differ from those of bulk materials. In this limit the excited states and ionization processes assume a molecular‐like character. However, diffraction of bonding electrons by the periodic lattice potential remains of paramount importance in the crystallite electronic structure. Schrodinger’s equation is solved at the same level of approximation as used in the analysis of bulk crystalline electron‐hole states (Wannier excitons). Kinetic energy is treated by the effective mass approximation, and the potential energy is due to high frequency dielectric solvation by atomic core electrons. An approximate formula is given for the lowest excited electronic state energy. This expression is dependent upon bulk electronic properties, and contains no adjustable parameters. The optical f number for absorption and emission is also considered. The same model is applied to the problem of two conduction band electrons in a small crystallite, in order to understand how the redox potential of excess electrons depends upon crystallite size.

4,322 citations

Book ChapterDOI
01 Jan 1994
TL;DR: Pulsed laser deposition of high-temperature superconducting thin films for active and passive device applications is discussed in this article, with a focus on the commercial scale-up of Pulsed Laser Deposition.
Abstract: Partial table of contents: History and Fundamentals of Pulsed Laser Deposition (J. Cheung). Diagnostics and Characteristics of Laser--Produced Plasmas (D. Geohegan). Particulates Generated by Pulsed Laser Ablation (L.--C. Chen). Angular Distribution of Ablated Material (K. Saenger). Film Nucleation and Film Growth in Pulsed Laser Deposition of Ceramics (J. Horwitz & J. Sprague). Processes Characteristics and Film Properties in Pulsed Laser Plasma Deposition (S. Metev). Commercial Scale--Up of Pulsed Laser Deposition (J. Greer). Pulsed Laser Deposition: Future Trends (T. Venkatesan). Comparison of Vacuum Deposition Techniques (G. Hubler). Pulsed Laser Deposition of High--Temperature Superconducting Thin Films for Active and Passive Device Applications (R. Muenchausen & X. Wu). Pulsed Laser Deposition of Metals (J. Kools). Appendix. References. Index.

3,228 citations

Book
01 Jan 1973
TL;DR: In this article, the transition elements involving metal-metal bonds are defined and an introductory essay is given, along with a discussion of homogeneous catalysis and transition metal chemistry, B L Shaw & N I Tucker.
Abstract: (partial) The lanthanides, T Moeller. Carbonyls, cyanides, isocyanides and nitrosyls, W P Griffith. Compounds of the transitional elements involving metal-metal bonds, D L Kepert. Transition metal, J C Green & M V H Green. Nonstoichiometric compounds. An introductory essay, D J M Bevan. Tungsten bronzes, vanadium bronzes and related compounds, P Hagenmuller. Isopolyanions and Heteropolyanions, D L Kepert. Ionic compounds, G C Allen. Transition metal chemistry, B F G Johnson. Organo-transition metal compounds and related aspects of homogenous catalysis, B L Shaw & N I Tucker.

3,003 citations

Journal ArticleDOI
23 May 2003-Science
TL;DR: The fabrication of transparent field-effect transistors using a single-crystalline thin-film transparent oxide semiconductor, InGaO3(ZnO)5, as an electron channel and amorphous hafnium oxide as a gate insulator provides a step toward the realization of transparent electronics for next-generation optoelectronics.
Abstract: We report the fabrication of transparent field-effect transistors using a single-crystalline thin-film transparent oxide semiconductor, InGaO 3 (ZnO) 5 , as an electron channel and amorphous hafnium oxide as a gate insulator. The device exhibits an on-to-off current ratio of ∼10 6 and a field-effect mobility of ∼80 square centimeters per volt per second at room temperature, with operation insensitive to visible light irradiation. The result provides a step toward the realization of transparent electronics for next-generation optoelectronics.

2,724 citations