scispace - formally typeset
Journal ArticleDOI

Recent Developments in the Ferrier Rearrangement

01 Nov 2013-European Journal of Organic Chemistry (John Wiley & Sons, Ltd)-Vol. 2013, Iss: 32, pp 7221-7262

...read more


Citations
More filters
Journal ArticleDOI

[...]

TL;DR: This Review covers classical approaches to deoxyglycoside synthesis, as well as more recently developed chemistry that aims to control the selectivity of the reaction through rational design of the promoter.
Abstract: Deoxy-sugars often play a critical role in modulating the potency of many bioactive natural products. Accordingly, there has been sustained interest in methods for their synthesis over the past several decades. The focus of much of this work has been on developing new glycosylation reactions that permit the mild and selective construction of deoxyglycosides. This Review covers classical approaches to deoxyglycoside synthesis, as well as more recently developed chemistry that aims to control the selectivity of the reaction through rational design of the promoter. Where relevant, the application of this chemistry to natural product synthesis will also be described.

112 citations

Journal ArticleDOI

[...]

TL;DR: In the last few years, considerable progress has been made in the synthesis of C-glycosides as mentioned in this paper, and due to its versatility, C glycosides play a pivotal role in developing novel materials, surfactants and bioactive molecules.
Abstract: In the last few years, considerable progress has been made in the synthesis of C-glycosides. Despite its challenging chemistry, due to its versatility, C-glycosides play a pivotal role in developing novel materials, surfactants and bioactive molecules. In this review, we present snapshots of various synthetic methodologies developed for C-glycosides in the recent years and the potential application of C-glycosides derived from β-C-glycosidic ketones.

58 citations

Journal ArticleDOI

[...]

TL;DR: This review highlights the C-glycosylation methods that have been practised in the total synthesis of natural products and pharmaceuticals in the past decade.
Abstract: Chemical C-glycosylation has been well developed to improve stereoselectivity in recent years. Due to its high efficiency to build C-glycosides or O-cyclic compounds, C-glycosylation has found widespread use in the synthesis of biologically active molecules. This review highlights the C-glycosylation methods that have been practised in the total synthesis of natural products and pharmaceuticals in the past decade.

50 citations

Journal ArticleDOI

[...]

TL;DR: A new two-step trans arylation of AR products to access 2,6-trans-dihydropyranones is reported, demonstrated in the first asymmetric total synthesis of (-)-musellarins A-C and 12 analogues in 11-12 steps.
Abstract: Fully functionalized pyranuloses derived from Achmatowicz rearrangement (AR) are versatile building blocks in organic synthesis. However, access to trans-2,6-dihydropyrans from pyranuloses remains underexplored. Herein, we report a new two-step trans arylation of AR products to access 2,6-trans-dihydropyranones. This new trans-arylation method built on numerous plausible, but unsuccessful, direct arylation reactions, including Ferrier-type and Tsuji–Trost-type reactions, was finally enabled by an unprecedented, highly regioselective γ-deoxygenation of AR products by using Zn/HOAc and a diastereoselective Heck–Matsuda coupling. The synthetic utility of the reaction was demonstrated in the first asymmetric total synthesis of (−)-musellarins A–C and 12 analogues in 11–12 steps. The brevity and efficiency of our synthetic route permitted preparation of enantiomerically pure musellarins and analogues (>20 mg) for preliminary cytotoxicity evaluation, which led us to identify two analogues with three-to-six times greater potency than the musellarins as promising new leads.

30 citations

Journal ArticleDOI

[...]

TL;DR: Pd(MeCN)2Cl2 enables the α-stereoselective catalytic synthesis of 2,3-unsaturated O-glycosides from O(3)-acylated glycals without the requirement for additives to preactivate either donor or nucleophile.
Abstract: Pd(MeCN)2Cl2 enables the α-stereoselective catalytic synthesis of 2,3-unsaturated O-glycosides from O(3)-acylated glycals without the requirement for additives to preactivate either donor or nucleophile Mechanistic studies suggest that, unlike traditional (η3-allyl)palladium-mediated processes, the reaction proceeds via an alkoxy-palladium intermediate that increases the proton acidity and oxygen nucleophilicity of the alcohol The method is exemplified with the synthesis of a range of glycosides and glycoconjugates of synthetic utility

30 citations


References
More filters
Journal ArticleDOI

[...]

TL;DR: A novel regiospecific copper(I)-catalyzed 1,3-dipolar cycloaddition of terminal alkynes to azides on solid-phase is reported, and the X-ray structure of 2-azido-2-methylpropanoic acid has been solved, to yield structural information on the 1, 3-dipoles entering the reaction.
Abstract: The cycloaddition of azides to alkynes is one of the most important synthetic routes to 1H-[1,2,3]-triazoles. Here a novel regiospecific copper(I)-catalyzed 1,3-dipolar cycloaddition of terminal alkynes to azides on solid-phase is reported. Primary, secondary, and tertiary alkyl azides, aryl azides, and an azido sugar were used successfully in the copper(I)-catalyzed cycloaddition producing diversely 1,4-substituted [1,2,3]-triazoles in peptide backbones or side chains. The reaction conditions were fully compatible with solid-phase peptide synthesis on polar supports. The copper(I) catalysis is mild and efficient (>95% conversion and purity in most cases) and furthermore, the X-ray structure of 2-azido-2-methylpropanoic acid has been solved, to yield structural information on the 1,3-dipoles entering the reaction. Novel Fmoc-protected amino azides derived from Fmoc-amino alcohols were prepared by the Mitsunobu reaction.

6,918 citations

Journal ArticleDOI

[...]

TL;DR: In this article, a reagent formed by combining diethyl azodicarboxylate (DEAD) and triphenylphosphine (TPP) could be utilized in the intermolecular dehydration between an alcohol and various acidic components such as carboxylic acids, phosphoric diesters, imides, and active methylene compounds.
Abstract: The reagent formed by combining diethyl azodicarboxylate (DEAD) and triphenylphosphine (TPP) could be utilized in the intermolecular dehydration between an alcohol and various acidic components such as carboxylic acids, phosphoric diesters, imides, and active methylene compounds. By the use of DEAD and TPP, diols and hydroxy acids gave cyclic ethers and lactones, respectively. The reaction of nucleosides with DEAD and TPP afforded triphenylphosphoranylnucleosides. Alcohols reacted with 2,6-di-t-butyl-4-nitrophenol in the presence of DEAD and TPP to give aci-nitroesters which converted into the corresponding carbonyl compounds.

3,136 citations

Journal ArticleDOI

[...]

TL;DR: The copper-(I)-catalyzed 1,2,3-triazole formation from azides and terminal acetylenes is a particularly powerful linking reaction, due to its high degree of dependability, complete specificity, and the bio-compatibility of the reactants.
Abstract: Click chemistry is a modular approach that uses only the most practical and reliable chemical transformations. Its applications are increasingly found in all aspects of drug discovery, ranging from lead finding through combinatorial chemistry and target-templated in situ chemistry, to proteomics and DNA research, using bioconjugation reactions. The copper-(I)-catalyzed 1,2,3-triazole formation from azides and terminal acetylenes is a particularly powerful linking reaction, due to its high degree of dependability, complete specificity, and the bio-compatibility of the reactants. The triazole products are more than just passive linkers; they readily associate with biological targets, through hydrogen bonding and dipole interactions.

2,722 citations

Journal ArticleDOI

[...]

TL;DR: An overview of the mechanism of this remarkable reaction is presented as a means to explain the myriad of experimental results, particularly the various methods of catalyst generation, solvent and substrate effects, and choice of base or ligand as discussed by the authors.
Abstract: CuI-catalyzed alkyne–azide cycloaddition provides 1,4-disubstituted 1,2,3-triazoles with such efficiency and scope that the transformation has been described as “click” chemistry. An overview of the mechanism of this remarkable reaction is presented as a means to explain the myriad of experimental results, particularly the various methods of catalyst generation, solvent and substrate effects, and choice of base or ligand. Both solution-phase and solid-phase results are comprehensively examined. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2006)

1,284 citations

Journal ArticleDOI

[...]

TL;DR: In this paper, the authors show how in der Natur am haufigsten vorkommenden Verbindungen, so fallt auf, dass the Bildung von Kohlenstoff-Heteroatom-Bindungen gegenuber der von KHO-Kohlenstoffs-KHO-Bindingsen deutlich bevorzugt is, and das Medium naturlicher Reaktionen zumeist Wasser ist.
Abstract: Betrachtet man die in der Natur am haufigsten vorkommenden Verbindungen, so fallt auf, dass die Bildung von Kohlenstoff-Heteroatom-Bindungen gegenuber der von Kohlenstoff-Kohlenstoff-Bindungen deutlich bevorzugt ist Da zum einen Kohlendioxid die Basisverbindung der Natur ist und andererseits das Medium naturlicher Reaktionen zumeist Wasser ist, uberrascht dies sicherlich nicht Nucleinsauren, Proteine und Polysaccharide sind polymere Kondensationsprodukte kleiner Untereinheiten, die durch Kohlenstoff-Heteroatom-Bindungen verknupft sind Sogar die etwa 35 Baueinheiten, aus denen diese essentiellen Verbindungen bestehen, enthalten nicht mehr als sechs aufeinander folgende C-C-Bindungen, sieht man einmal von den drei aromatischen Aminosauren ab Mit der Natur als Vorbild richteten wir unser Interesse auf die Entwicklung leistungsfahiger, gut funktionierender und selektiver Reaktionen fur die effiziente Synthese neuartiger nutzlicher Verbindungen sowie kombinatorischer Bibliotheken mittels Heteroatomverknupfungen (C-X-C) Diese Synthesestrategie nennen wir „Click-Chemie“ Click-Chemie ist durch eine Auswahl einiger weniger nahezu idealer Reaktionen charakterisiert, mit all ihren Grenzen und Moglichkeiten In diesem Beitrag werden zum einen die strengen Kriterien, die Reaktionen erfullen mussen, um die Bezeichnung „Click-Chemie“ zu verdienen, definiert, zum anderen werden Beispiele fur molekulare Strukturen gegeben, die mit dieser spartanischen, aber dennoch leistungsfahigen Synthesestrategie leicht hergestellt werden konnen

1,276 citations