scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Recent Developments in the Ferrier Rearrangement

01 Nov 2013-European Journal of Organic Chemistry (John Wiley & Sons, Ltd)-Vol. 2013, Iss: 32, pp 7221-7262
TL;DR: A review of recent developments in the use of promoters for the Ferrier rearrangement of O-, N-, C- and S-nucleophiles with glycals can be found in this paper.
About: This article is published in European Journal of Organic Chemistry.The article was published on 2013-11-01. It has received 121 citations till now. The article focuses on the topics: Ferrier rearrangement & Ferrier carbocyclization.
Citations
More filters
Journal ArticleDOI
TL;DR: This Review covers classical approaches to deoxyglycoside synthesis, as well as more recently developed chemistry that aims to control the selectivity of the reaction through rational design of the promoter.
Abstract: Deoxy-sugars often play a critical role in modulating the potency of many bioactive natural products. Accordingly, there has been sustained interest in methods for their synthesis over the past several decades. The focus of much of this work has been on developing new glycosylation reactions that permit the mild and selective construction of deoxyglycosides. This Review covers classical approaches to deoxyglycoside synthesis, as well as more recently developed chemistry that aims to control the selectivity of the reaction through rational design of the promoter. Where relevant, the application of this chemistry to natural product synthesis will also be described.

194 citations

Journal ArticleDOI
TL;DR: This review highlights the C-glycosylation methods that have been practised in the total synthesis of natural products and pharmaceuticals in the past decade.
Abstract: Chemical C-glycosylation has been well developed to improve stereoselectivity in recent years. Due to its high efficiency to build C-glycosides or O-cyclic compounds, C-glycosylation has found widespread use in the synthesis of biologically active molecules. This review highlights the C-glycosylation methods that have been practised in the total synthesis of natural products and pharmaceuticals in the past decade.

75 citations

Journal ArticleDOI
TL;DR: In the last few years, considerable progress has been made in the synthesis of C-glycosides as mentioned in this paper, and due to its versatility, C glycosides play a pivotal role in developing novel materials, surfactants and bioactive molecules.

69 citations

Journal ArticleDOI
TL;DR: In this article, the authors evaluate the fundamental connections between the anomeric effect and a broad variety of O-functional groups and highlight the vast implications of AE for the structure and reactivity of organic O-functionalities.
Abstract: Although carbon is the central element of organic chemistry, oxygen is the central element of stereoelectronic control in organic chemistry. Generally, a molecule with a C–O bond has both a strong donor (a lone pair) and a strong acceptor (e.g., a σ*C–O orbital), a combination that provides opportunities to influence chemical transformations at both ends of the electron demand spectrum. Oxygen is a stereoelectronic chameleon that adapts to the varying situations in radical, cationic, anionic, and metal-mediated transformations. Arguably, the most historically important stereoelectronic effect is the anomeric effect (AE), i.e., the axial preference of acceptor groups at the anomeric position of sugars. Although AE is generally attributed to hyperconjugative interactions of σ-acceptors with a lone pair at oxygen (negative hyperconjugation), recent literature reports suggested alternative explanations. In this context, it is timely to evaluate the fundamental connections between the AE and a broad variety of O-functional groups. Such connections illustrate the general role of hyperconjugation with oxygen lone pairs in reactivity. Lessons from the AE can be used as the conceptual framework for organizing disjointed observations into a logical body of knowledge. In contrast, neglect of hyperconjugation can be deeply misleading as it removes the stereoelectronic cornerstone on which, as we show in this review, the chemistry of organic oxygen functionalities is largely based. As negative hyperconjugation releases the “underutilized” stereoelectronic power of unshared electrons (the lone pairs) for the stabilization of a developing positive charge, the role of orbital interactions increases when the electronic demand is high and molecules distort from their equilibrium geometries. From this perspective, hyperconjugative anomeric interactions play a unique role in guiding reaction design. In this manuscript, we discuss the reactivity of organic O-functionalities, outline variations in the possible hyperconjugative patterns, and showcase the vast implications of AE for the structure and reactivity. On our journey through a variety of O-containing organic functional groups, from textbook to exotic, we will illustrate how this knowledge can predict chemical reactivity and unlock new useful synthetic transformations.

60 citations

Journal ArticleDOI
TL;DR: This review summarizes the literature on the different transformations of the endo glycals into biologically relevant compounds as well as on the use of glycals as chiral building blocks for the synthesis of various natural products such as aspicilin, reblastatin, diospongins, decytospolides, osmundalactones, paclitaxel, isatisine, d-fagomine, and spliceostatin, reported post 2014.
Abstract: Glycals, 1,2-unsaturated sugar derivatives, are versatile starting materials for the synthesis of natural products and the generation of novel structural features in Diversity Oriented Synthesis (DOS). The versatility of glycals in synthesis emanates, among others, from the presence of the ring oxygen and the enol-ether type unsaturation, the different types of stable conformations they can adopt depending on the nature of the protecting groups present and the ease with which the protecting groups of the three hydroxy groups could be tailored to suite for a desired manipulation. This review summarizes the literature on the different transformations of the endo glycals into biologically relevant compounds such as chromans, thiochromans, chromenes, thiochromenes, peptidomimetics, bridged benzopyrans etc., as well as on the use of glycals as chiral building blocks for the synthesis of various natural products such as aspicilin, reblastatin, diospongins, decytospolides, osmundalactones, paclitaxel, isatisine, D-fagomine, and spliceostatin, reported post 2014.

37 citations

References
More filters
Journal ArticleDOI
TL;DR: In this paper, a highly stereoselective method for O-glycosylation of glycals and glycosylbromides was developed using orthoformates as acceptors in the presence of InCl 3 to afford the corresponding O -glycopyranosides in 66-94% yield.

22 citations

Journal ArticleDOI
TL;DR: In this paper, tri-O acetyl-D-glucal 1 with diverse thiols was treated in the presence of LiBF4 in CH3CN, furnished aryl/alkyl 2,3-unsaturated thioglycopyranosides 8−13 (56-72%).

21 citations

Journal ArticleDOI
TL;DR: Interestingly exo -glycals were found to have higher activity than endo - glycals and common glycosides, the reactions of which can be improved by the addition of Lewis acid to result in a higher yield and enhanced stereoselectivity.
Abstract: exo -Glycosyl carbonates were shown to be efficient glycosyl donors in microwave-assisted glycosylation. In these reactions α-glycosyl additions occurred with excellent stereoselectivity and were complete in 4–8 min with 75–92% yield. Interestingly exo -glycals were found to have higher activity than endo -glycals and common glycosides, the reactions of which can be improved by the addition of Lewis acid to result in a higher yield and enhanced stereoselectivity.

21 citations

Journal ArticleDOI
TL;DR: The first regioselective synthesis of β-galactofuranosides by Fischer glycosidation of GalNAc with methanol catalyzed by HY, HZSM-5 and HBEA acid zeolites was reported in this article.
Abstract: We report herein the first regioselective synthesis of β-galactofuranosides by Fischer glycosidation of GalNAc with methanol catalyzed by HY, HZSM-5 and HBEA acid zeolites. The zeolite HY (Si/Al ratio 3.1) was the most efficient catalyst, leading to the highest yield of methyl β-galactofuranoside, isolated as its acetylated or isopropylidene derivatives, indicating that with large pore zeolites, the reaction efficiency depends upon the concentration of the zeolite acid sites and its hydrophilicity. However, the best regioselectivity for β-galactofuranoside versus β-galactopyranoside was obtained with the medium pore zeolite HZSM-5, which also led to the lowest starting material conversion, suggesting that both the zeolite pore size and topology are determinant for the obtained results. Furthermore, these acid zeolites proved to be efficient catalysts to transform 1,5-anhydro-3,4,6-tri-O-benzyl-2-deoxy- d -arabino-hex-1-enitol (6) (3,4,6-tri-O-benzyl- d -glucal) exclusively in the 2,3-unsaturated-O- and -S-α- d -glycosides by Ferrier rearrangement, in moderate yield. For this reaction, the number of acid sites was the key factor for the reaction yield, being HY (Si/Al ratio 3.1) also the most effective zeolite.

21 citations