scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Recent Progress in Growth of Single-Crystal Perovskites for Photovoltaic Applications

Abstract: The growth of high-quality single-crystal (SC) perovskite films is a great strategy for the fabrication of defect-free perovskite solar cells (PSCs) with photovoltaic parameters close to the theoretical limit, which resulted in high efficiency and superior stability of the device. Plenty of growth methods for perovskite SCs are available to achieve a maximum power conversion efficiency (PCE) surpassing 21% for SC-based PSCs. However, there is still a lot of room to further push the efficiency by considering new crystal growth techniques, interface engineering, passivation approaches, and additive engineering. In this review, we summarize the recent progress in the growth of SC-based perovskite films for the fabrication of high-efficiency and stable PSCs. We describe the impact of SC growth of perovskite films and their quality on the device performance and stability, compared with the commonly used polycrystalline perovskite films. In the last section, the challenges and potential of SCs in PSCs are also covered for future development.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper , the authors considered many aspects and the critical development possibilities of tin-based perovskites, including drawbacks and challenges based on their physical properties, and provided insights for future device applications that go beyond solar cells.
Abstract: Organic–inorganic hybrid halide perovskite materials have attracted considerable research interest, especially for photovoltaics. In addition, their scope has been extended towards light-emitting devices, photodetectors, or detectors. However, the toxicity of lead (Pb) element in perovskite compositions limits their applications. Therefore, a tremendous research effort on replacing is underway. More specifically, tin-based perovskites have shown the highest potential for this purpose. However, many challenges remain before these materials reach the goals of stability, safety, and eventually commercial application. This perspective considers many aspects and the critical development possibilities of tin-based perovskites, including drawbacks and challenges based on their physical properties. Additionally, it provides insights for future device applications that go beyond solar cells. Finally, the existing challenges and opportunities in tin-based perovskites are discussed.

14 citations

Journal ArticleDOI
TL;DR: In this article , anion exchange resins were used to improve the optical performance and surface morphology of all-inorganic perovskite quantum dots (IPQDs) for photoluminescence quantum yield.
Abstract: Abstract Photoelectric properties of all-inorganic perovskite quantum dots (IPQDs) highly depend on their synthetic route. However, current synthetic processes of IPQDs are widely facing potential unsustainable issues of containing nonreusable and high-cost auxiliary materials. In this work, full-visible-spectrum IPQDs were successfully synthesized by an environmentally friendly ion-exchange approach with a renewable and low-cost anion exchange resin. Introducing anion exchange resin brings the improvement of both optical performance and surface morphology of the prepared IPQDs. The emission wavelength of IPQDs can be precisely controlled without changing their inherent crystal phase, and those IPQD’s single crystals with poor morphology and unstable structure are selectively removed. The photoluminescence quantum yield (PLQY) and the fluorescence lifetime of the three-primary-color IPQDs can be dramatically improved to 93.69, 89.99, and 65.03% and 71.3 ns, 22.2 ns, and 13.2 ns, respectively. Notably, the red-emitting PQDs at 622 nm exhibit a record high PLQY. By using the prepared IPQDs for photoluminescent color conversion, the three-primary-color light-emitting diodes (LEDs) provided high brightness and wide color gamut simultaneously. This study provides new ideas for the environmentally friendly and sustainable synthesis route of IPQDs, and it is expected to show great ambitions in the display field.

11 citations

Journal ArticleDOI
TL;DR: In this article , the effect of electrical poling on the photodetection properties of self-powered photodeterors (PDs) based on halide perovskites in two different phase structures (i.e., tetragonal and cubic) was investigated.
Abstract: The use of electrical poling to induce polarization potential has been found to increase the photocurrent (Ilight) in hybrid perovskite-based devices; however, the origin of this process has not been fully understood. Here, we study the effect of electrical poling on the photodetection properties of self-powered photodetectors (PDs) based on halide perovskites in two different phase structures (i.e., tetragonal and cubic). Specifically, extensive investigations are performed on the MAPbI3 (tetragonal) and MAPb(I0.88Br0.12)3 (cubic) single crystals (SCs). Our characterization results revealed that the Ilight has increased by 2-fold during forward poling and decreased during reverse poling in both PDs. The improved Ilight is caused by polarization induced ion migration, which builds remanent potential due to ion accumulation near metal electrodes. The effect of this polarization was found to be greater in MAPbI3 PD as compared to MAPb(I0.88Br0.12)3 PD, which influences the interface band bending and reduces Schottky barrier height (SBH). This study highlights that the modification of SBH, which describes the potential energy barrier for electrons formed at a metal–semiconductor junction, can tune the photocurrent and response time of PDs.

8 citations

Journal ArticleDOI
TL;DR: In this paper , the structural, optical, and electronic anisotropy of perovskite single crystals (PSCs) is studied from a molecular perspective focusing on the structural and optical properties of PSCs.
Abstract: Single crystals of semiconductor materials have been extensively studied in optoelectronic applications because of the absence of grain boundary, lesser defects, and long-range order of crystallinity. Due to their multifaceted character, crystals are very often found to have significant anisotropic properties. These anisotropic properties lead to a considerable variation in their fundamental properties and optoelectronics applications. In the past decade, halide perovskites have emerged as one of the most exciting classes of semiconductors due to their rich photophysical properties leading to applications in solar cells, light-emitting diodes, photodetectors, etc. Especially, perovskite single crystals (PSCs) with an absence of grain boundaries, remarkably longer carrier diffusion lengths, significantly lower trap densities, and long-range order have received wide attention in large-scale device deployment. Interestingly, PSCs also exhibit strong anisotropy-dependent fundamental properties, and correspondingly their device applications are highly tunable. Here, in this feature article, we address a molecular perspective focusing on the structural, optical, and electronic anisotropy in PSCs. In addition, we discuss how anisotropy can affect the performance of PSCs-based devices. Furthermore, we highlight the future directions for implementing a fundamental understanding of the anisotropic response of PSCs to design novel and emergent optoelectronics devices.

3 citations

Journal ArticleDOI
TL;DR: In this article , the surface and bulk electrical responses of methylammonium lead tribromide (MAPbBr3) SCs using impedance spectroscopy (IS) were distinguished using different optical excitations for the generation of carriers.
Abstract: Single crystals (SCs) of halide perovskites are rapidly gaining attention over their polycrystalline thin-film counterparts due to their superior optoelectronic properties. One of the various reasons for their improved properties is the reduced defect concentration as compared with thin films. Since their discovery, many efforts have been devoted to discerning the surface and bulk properties of SCs. However, it is difficult to probe the surface and bulk responses of SCs, and only a few reports distinguishing between these properties have been presented. In this study, we distinguished between the surface and bulk electrical responses of methylammonium lead tribromide (MAPbBr3) SCs using impedance spectroscopy (IS). The electrical response of the MAPbBr3 SC was recorded using different optical excitations for the generation of carriers. The Nyquist plots and capacitance–frequency responses observed under blue and red wavelengths differ significantly from each other and were studied systematically. The results obtained suggest that the photocurrent and capacitive response under blue light are higher than those under red light. Moreover, the change in the low-frequency capacitance is lower in the case of blue light. This is because of the polarization of the interface of metal contacts and the surface of SCs or due to defect-mediated conductivity. As the carriers are collected efficiently from the surface following a rapid process, they do not contribute to the capacitance build-up with temperature. To the best of our knowledge, electrical responses such as the impedance and the capacitive response of SCs using different illumination wavelengths and temperatures have been rarely discussed in the literature.

3 citations

References
More filters
Journal ArticleDOI
TL;DR: Two organolead halide perovskite nanocrystals were found to efficiently sensitize TiO(2) for visible-light conversion in photoelectrochemical cells, which exhibit strong band-gap absorptions as semiconductors.
Abstract: Two organolead halide perovskite nanocrystals, CH3NH3PbBr3 and CH3NH3PbI3, were found to efficiently sensitize TiO2 for visible-light conversion in photoelectrochemical cells. When self-assembled on mesoporous TiO2 films, the nanocrystalline perovskites exhibit strong band-gap absorptions as semiconductors. The CH3NH3PbI3-based photocell with spectral sensitivity of up to 800 nm yielded a solar energy conversion efficiency of 3.8%. The CH3NH3PbBr3-based cell showed a high photovoltage of 0.96 V with an external quantum conversion efficiency of 65%.

16,634 citations

Journal ArticleDOI
TL;DR: A bilayer architecture comprising the key features of mesoscopic and planar structures obtained by a fully solution-based process is reported, providing important progress towards the understanding of the role of solution-processing in the realization of low-cost and highly efficient perovskite solar cells.
Abstract: The performance of solar cells based on organic–inorganic perovskites strongly depends on the device architecture and processing conditions. It is now shown that solvent engineering enables the deposition of very dense perovskite layers on mesoporous titania, leading to photovoltaic devices with a high light-conversion efficiency and no hysteresis.

5,684 citations

Journal ArticleDOI
27 Feb 2015-Science
TL;DR: It is found that the diffusion lengths in CH3NH3PbI3 single crystals grown by a solution-growth method can exceed 175 micrometers under 1 sun (100 mW cm−2) illumination and exceed 3 millimeters under weak light for both electrons and holes.
Abstract: Long, balanced electron and hole diffusion lengths greater than 100 nanometers in the polycrystalline organolead trihalide compound CH3NH3PbI3 are critical for highly efficient perovskite solar cells. We found that the diffusion lengths in CH3NH3PbI3 single crystals grown by a solution-growth method can exceed 175 micrometers under 1 sun (100 mW cm(-2)) illumination and exceed 3 millimeters under weak light for both electrons and holes. The internal quantum efficiencies approach 100% in 3-millimeter-thick single-crystal perovskite solar cells under weak light. These long diffusion lengths result from greater carrier mobility, longer lifetime, and much smaller trap densities in the single crystals than in polycrystalline thin films. The long carrier diffusion lengths enabled the use of CH3NH3PbI3 in radiation sensing and energy harvesting through the gammavoltaic effect, with an efficiency of 3.9% measured with an intense cesium-137 source.

4,393 citations

Journal ArticleDOI
TL;DR: This paper demonstrates highly efficient solar cells exhibiting 12.3% in a power conversion efficiency of under standard AM 1.5, for the most efficient device, as a result of tunable composition for the light harvester in conjunction with a mesoporous TiO2 film and a hole conducting polymer.
Abstract: Chemically tuned inorganic–organic hybrid materials, based on CH3NH3(═MA)Pb(I1–xBrx)3 perovskites, have been studied using UV–vis absorption and X-ray diffraction patterns and applied to nanostructured solar cells. The band gap engineering brought about by the chemical management of MAPb(I1–xBrx)3 perovskites can be controllably tuned to cover almost the entire visible spectrum, enabling the realization of colorful solar cells. We demonstrate highly efficient solar cells exhibiting 12.3% in a power conversion efficiency of under standard AM 1.5, for the most efficient device, as a result of tunable composition for the light harvester in conjunction with a mesoporous TiO2 film and a hole conducting polymer. We believe that the works highlighted in this paper represent one step toward the realization of low-cost, high-efficiency, and long-term stability with colorful solar cells.

4,065 citations

Journal ArticleDOI
30 Jan 2015-Science
TL;DR: An antisolvent vapor-assisted crystallization approach is reported that enables us to create sizable crack-free MAPbX3 single crystals with volumes exceeding 100 cubic millimeters, which enabled a detailed characterization of their optical and charge transport characteristics.
Abstract: The fundamental properties and ultimate performance limits of organolead trihalide MAPbX3 (MA = CH3NH3(+); X = Br(-) or I(-)) perovskites remain obscured by extensive disorder in polycrystalline MAPbX3 films. We report an antisolvent vapor-assisted crystallization approach that enables us to create sizable crack-free MAPbX3 single crystals with volumes exceeding 100 cubic millimeters. These large single crystals enabled a detailed characterization of their optical and charge transport characteristics. We observed exceptionally low trap-state densities on the order of 10(9) to 10(10) per cubic centimeter in MAPbX3 single crystals (comparable to the best photovoltaic-quality silicon) and charge carrier diffusion lengths exceeding 10 micrometers. These results were validated with density functional theory calculations.

3,939 citations