scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Recent progress in organocatalytic asymmetric total syntheses of complex indole alkaloids

15 Mar 2017-National Science Review (Science China Press)-Vol. 4, Iss: 3, pp 381-396
TL;DR: This review will summarize recent applications of asymmetric organocatalysis in the enantioselective synthesis of indole alkaloids.
Abstract: Indole and its structural analogues have been frequently found in numerous alkaloids, pharmaceutical products and related materials. The enantioselective construction of these structures allows efficient total synthesis of optically pure indole alkaloids, and hence has received worldwide interest. In the past decade, asymmetric organocatalysis has been recognized as one of the most powerful strategies to create chiral molecules with high levels of stereoselectivity. In particular, organocatalytic asymmetric cascade reactions often occur with multiple bond-breaking and forming events simultaneously or sequentially, leading to the appearance of various straightforward approaches to access core structures for asymmetric total synthesis. This review will summarize recent applications of asymmetric organocatalysis in the enantioselective synthesis of indole alkaloids.
Citations
More filters
Journal ArticleDOI
TL;DR: This review presents the recent contributions inalytic asymmetric dearomatization reactions of indole derivatives and describes the synthetic details according to their different dearomative cyclization strategies.

201 citations

Journal ArticleDOI
TL;DR: A comprehensive overview of the applications of asymmetric organocatalysis in medicinal chemistry can be found in this article, with a focus on the preparation of antiviral, anticancer, neuroprotective, cardiovascular, antibacterial, and antiparasitic agents, as well as several miscellaneous bioactive agents.
Abstract: The efficacy and synthetic versatility of asymmetric organocatalysis have contributed enormously to the field of organic synthesis since the early 2000s. As asymmetric organocatalytic methods mature, they have extended beyond the academia and undergone scale-up for the production of chiral drugs, natural products, and enantiomerically enriched bioactive molecules. This review provides a comprehensive overview of the applications of asymmetric organocatalysis in medicinal chemistry. A general picture of asymmetric organocatalytic strategies in medicinal chemistry is firstly presented, and the specific applications of these strategies in pharmaceutical synthesis are systematically described, with a focus on the preparation of antiviral, anticancer, neuroprotective, cardiovascular, antibacterial, and antiparasitic agents, as well as several miscellaneous bioactive agents. The review concludes with a discussion of the challenges, limitations and future prospects for organocatalytic asymmetric synthesis of medicinally valuable compounds.

144 citations

Journal ArticleDOI
TL;DR: The first organocatalyzed asymmetric dearomative cycloaddition between 2-nitrobenzofurans and isatin-derived Morita-Baylis-Hillman carbonates has been developed.

73 citations

Journal ArticleDOI
TL;DR: An unprecedented gold-catalyzed bicyclization reaction of diaryl alkynes has been developed for the synthesis of indoles in good to high yields and generated tetracyclic-indoles with PCC as the oxidant provided straightforward access to the spirooxindoles in high yields.

70 citations

Journal ArticleDOI
TL;DR: This review provides an overview of synthetic transformations that have been performed by both electro- and photoredox catalysis, and extracts key components that can be used as guidelines to refine, complement and innovate these two disciplines of organic synthesis.
Abstract: This review provides an overview of synthetic transformations that have been performed by both electro- and photoredox catalysis. Both toolboxes are evaluated and compared in their ability to enable said transformations. Analogies and distinctions are formulated to obtain a better understanding in both research areas. This knowledge can be used to conceptualize new methodological strategies for either of both approaches starting from the other. It was attempted to extract key components that can be used as guidelines to refine, complement and innovate these two disciplines of organic synthesis.

68 citations

References
More filters
Journal ArticleDOI
06 Dec 1991-Science
TL;DR: Transition metal-catalyzed methods that are both selective and economical for formation of cyclic structures, of great interest for biological purposes, represent an important starting point for this long-term goal.
Abstract: Efficient synthetic methods required to assemble complex molecular arrays include reactions that are both selective (chemo-, regio-, diastereo-, and enantio-) and economical in atom count (maximum number of atoms of reactants appearing in the products). Methods that involve simply combining two or more building blocks with any other reactant needed only catalytically constitute the highest degree of atom economy. Transition metal-catalyzed methods that are both selective and economical for formation of cyclic structures, of great interest for biological purposes, represent an important starting point for this long-term goal. The limited availability of raw materials, combined with environmental concerns, require the highlighting of these goals.

3,830 citations

Journal ArticleDOI
26 Jun 2014-Nature
TL;DR: A concise overview of N-heterocyclic carbenes in modern chemistry is provided, summarizing their general properties and uses and highlighting how these features are being exploited in a selection of pioneering recent studies.
Abstract: The successful isolation and characterization of an N-heterocyclic carbene in 1991 opened up a new class of organic compounds for investigation. From these beginnings as academic curiosities, N-heterocyclic carbenes today rank among the most powerful tools in organic chemistry, with numerous applications in commercially important processes. Here we provide a concise overview of N-heterocyclic carbenes in modern chemistry, summarizing their general properties and uses and highlighting how these features are being exploited in a selection of pioneering recent studies.

2,932 citations

Journal ArticleDOI
TL;DR: The inversion of the classical reactivity (Umpolung) opens up new synthetic pathways in biochemical processes as nucleophilic acylations and in nature, the coenzyme thiamine (vitamin B1), a natural thiazolium salt, utilizes a catalytic variant of this concept in biochemical process as nucleophile acylation.
Abstract: In the investigation of efficient chemical transformations, the carbon-carbon bond-forming reactions play an outstanding role. In this context, organocatalytic processes have achieved considerable attention. 1 Beside their facile reaction course, selectivity, and environmental friendliness, new synthetic strategies are made possible. Particularly, the inversion of the classical reactivity (Umpolung) opens up new synthetic pathways. 2 In nature, the coenzyme thiamine (vitamin B1), a natural thiazolium salt, utilizes a catalytic variant of this concept in biochemical processes as nucleophilic acylations. 3 The catalytically active species is a nucleophilic carbene. 4

2,351 citations

Journal ArticleDOI
TL;DR: The diverse examples show that in recent years organocatalysis has developed within organic chemistry into its own subdiscipline, whose "Golden Age" has already dawned.
Abstract: The term "organocatalysis" describes the acceleration of chemical reactions through the addition of a substoichiometric quantity of an organic compound. The interest in this field has increased spectacularly in the last few years as result of both the novelty of the concept and, more importantly, the fact that the efficiency and selectivity of many organocatalytic reactions meet the standards of established organic reactions. Organocatalytic reactions are becoming powerful tools in the construction of complex molecular skeletons. The diverse examples show that in recent years organocatalysis has developed within organic chemistry into its own subdiscipline, whose "Golden Age" has already dawned.

2,279 citations