scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Recent Progress of the Solid-State Electrolytes for High-Energy Metal-Based Batteries

01 Apr 2018-Advanced Energy Materials (John Wiley & Sons, Ltd)-Vol. 8, Iss: 11, pp 1702657
About: This article is published in Advanced Energy Materials.The article was published on 2018-04-01. It has received 771 citations till now.
Citations
More filters
Journal ArticleDOI
Rusong Chen1, Qinghao Li1, Xiqian Yu1, Liquan Chen1, Hong Li1 
TL;DR: This review presents an overview on the scientific challenges, fundamental mechanisms, and design strategies for solid-state batteries, specifically focusing on the stability issues ofSolid-state electrolytes and the associated interfaces with both cathode and anode electrodes.
Abstract: Solid-state batteries have been attracting wide attention for next generation energy storage devices due to the probability to realize higher energy density and superior safety performance compared with the state-of-the-art lithium ion batteries. However, there are still intimidating challenges for developing low cost and industrially scalable solid-state batteries with high energy density and stable cycling life for large-scale energy storage and electric vehicle applications. This review presents an overview on the scientific challenges, fundamental mechanisms, and design strategies for solid-state batteries, specifically focusing on the stability issues of solid-state electrolytes and the associated interfaces with both cathode and anode electrodes. First, we give a brief overview on the history of solid-state battery technologies, followed by introduction and discussion on different types of solid-state electrolytes. Then, the associated stability issues, from phenomena to fundamental understandings, are intensively discussed, including chemical, electrochemical, mechanical, and thermal stability issues; effective optimization strategies are also summarized. State-of-the-art characterization techniques and in situ and operando measurement methods deployed and developed to study the aforementioned issues are summarized as well. Following the obtained insights, perspectives are given in the end on how to design practically accessible solid-state batteries in the future.

688 citations

Journal ArticleDOI
TL;DR: In this article, a new class of Zn anodes modified by a 3D nanoporous ZnO architecture coating on a Zn plate (designated as Zn@ZnO-3D) was presented.
Abstract: The zinc metal is recognized as one of the most promising anodes for Zn-based batteries in an energy-storage system. However, the deposition and transfer of bivalent Zn2+ into the host structure suffer from sluggish kinetics accompanying the side-reactions at the interface. Herein, we report a new class of Zn anodes modified by a three-dimensional (3D) nanoporous ZnO architecture coating on a Zn plate (designated as Zn@ZnO-3D) prepared by in situ Zn(OH)42− deposition onto the surface. This novel structure has been proven to accelerate the kinetics of Zn2+ transfer and deposition via the electrostatic attraction toward Zn2+ rather than the hydrated one in the electrical double layer. As a consequence, it achieves an average 99.55% Zn utilization and long-time stability for 1000 cycles. Meanwhile, the Zn@ZnO-3D/MnO2 cell shows no capacity fading after 500 cycles at 0.5 A g−1 with a specific capacity of 212.9 mA h g−1. We believe that the mechanistic insight into the kinetics and thermodynamic properties of the Zn metal and the understanding of structure–interface–function relationships are very useful for other metal anodes in aqueous systems.

670 citations

Journal ArticleDOI
TL;DR: A nanoporous polyimide film filled with a solid polymer electrolyte has high ionic conductivity and high mechanical strength, and an all-solid-state lithium-ion batteries fabricated with PI/PEO/LiTFSI solid electrolyte show good cycling performance and withstand abuse tests such as bending, cutting and nail penetration.
Abstract: The urgent need for safer batteries is leading research to all-solid-state lithium-based cells. To achieve energy density comparable to liquid electrolyte-based cells, ultrathin and lightweight solid electrolytes with high ionic conductivity are desired. However, solid electrolytes with comparable thicknesses to commercial polymer electrolyte separators (~10 μm) used in liquid electrolytes remain challenging to make because of the increased risk of short-circuiting the battery. Here, we report on a polymer–polymer solid-state electrolyte design, demonstrated with an 8.6-μm-thick nanoporous polyimide (PI) film filled with polyethylene oxide/lithium bis(trifluoromethanesulfonyl)imide (PEO/LiTFSI) that can be used as a safe solid polymer electrolyte. The PI film is nonflammable and mechanically strong, preventing batteries from short-circuiting even after more than 1,000 h of cycling, and the vertical channels enhance the ionic conductivity (2.3 × 10−4 S cm−1 at 30 °C) of the infused polymer electrolyte. All-solid-state lithium-ion batteries fabricated with PI/PEO/LiTFSI solid electrolyte show good cycling performance (200 cycles at C/2 rate) at 60 °C and withstand abuse tests such as bending, cutting and nail penetration. A nanoporous polyimide film filled with a solid polymer electrolyte has high ionic conductivity and high mechanical strength. An all-solid-state battery made with an approximately 10-μm-thick film shows good cyclability at 60 °C and no dendrite formation.

661 citations

Journal ArticleDOI
TL;DR: Garnet-type electrolyte has been considered one of the most promising and important solid-state electrolytes for batteries with potential benefits in energy density, electrochemical stability, high temperature stability, and safety, and this Review will survey recent development of garnet- type LLZO electrolytes.
Abstract: Solid-state batteries with desirable advantages, including high-energy density, wide temperature tolerance, and fewer safety-concerns, have been considered as a promising energy storage technology to replace organic liquid electrolyte-dominated Li-ion batteries. Solid-state electrolytes (SSEs) as the most critical component in solid-state batteries largely lead the future battery development. Among different types of solid-state electrolytes, garnet-type Li7La3Zr2O12 (LLZO) solid-state electrolytes have particularly high ionic conductivity (10-3 to 10-4 S/cm) and good chemical stability against Li metal, offering a great opportunity for solid-state Li-metal batteries. Since the discovery of garnet-type LLZO in 2007, there has been an increasing interest in the development of garnet-type solid-state electrolytes and all solid-state batteries. Garnet-type electrolyte has been considered one of the most promising and important solid-state electrolytes for batteries with potential benefits in energy density, electrochemical stability, high temperature stability, and safety. In this Review, we will survey recent development of garnet-type LLZO electrolytes with discussions of experimental studies and theoretical results in parallel, LLZO electrolyte synthesis strategies and modifications, stability of garnet solid electrolytes/electrodes, emerging nanostructure designs, degradation mechanisms and mitigations, and battery architectures and integrations. We will also provide a target-oriented research overview of garnet-type LLZO electrolyte and its application in various types of solid-state battery concepts (e.g., Li-ion, Li-S, and Li-air), and we will show opportunities and perspectives as guides for future development of solid electrolytes and solid-state batteries.

511 citations

Journal ArticleDOI
TL;DR: In this paper, the authors discuss the recent achievements, challenges, and opportunities of four important "beyond Li-ion" technologies: Na-ion batteries, K-ion, all-solid-state batteries, and multivalent batteries.
Abstract: The tremendous improvement in performance and cost of lithium-ion batteries (LIBs) have made them the technology of choice for electrical energy storage. While established battery chemistries and cell architectures for Li-ion batteries achieve good power and energy density, LIBs are unlikely to meet all the performance, cost, and scaling targets required for energy storage, in particular, in large-scale applications such as electrified transportation and grids. The demand to further reduce cost and/or increase energy density, as well as the growing concern related to natural resource needs for Li-ion have accelerated the investigation of so-called "beyond Li-ion" technologies. In this review, we will discuss the recent achievements, challenges, and opportunities of four important "beyond Li-ion" technologies: Na-ion batteries, K-ion batteries, all-solid-state batteries, and multivalent batteries. The fundamental science behind the challenges, and potential solutions toward the goals of a low-cost and/or high-energy-density future, are discussed in detail for each technology. While it is unlikely that any given new technology will fully replace Li-ion in the near future, "beyond Li-ion" technologies should be thought of as opportunities for energy storage to grow into mid/large-scale applications.

485 citations

References
More filters
Journal ArticleDOI
06 Feb 2008-Nature
TL;DR: Researchers must find a sustainable way of providing the power their modern lifestyles demand to ensure the continued existence of clean energy sources.
Abstract: Researchers must find a sustainable way of providing the power our modern lifestyles demand.

15,980 citations

Journal ArticleDOI
TL;DR: The phytochemical properties of Lithium Hexafluoroarsenate and its Derivatives are as follows: 2.2.1.
Abstract: 2.1. Solvents 4307 2.1.1. Propylene Carbonate (PC) 4308 2.1.2. Ethers 4308 2.1.3. Ethylene Carbonate (EC) 4309 2.1.4. Linear Dialkyl Carbonates 4310 2.2. Lithium Salts 4310 2.2.1. Lithium Perchlorate (LiClO4) 4311 2.2.2. Lithium Hexafluoroarsenate (LiAsF6) 4312 2.2.3. Lithium Tetrafluoroborate (LiBF4) 4312 2.2.4. Lithium Trifluoromethanesulfonate (LiTf) 4312 2.2.5. Lithium Bis(trifluoromethanesulfonyl)imide (LiIm) and Its Derivatives 4313

5,710 citations

Journal ArticleDOI
TL;DR: Li-ion battery technology has become very important in recent years as these batteries show great promise as power sources that can lead us to the electric vehicle (EV) revolution as mentioned in this paper.
Abstract: Li-ion battery technology has become very important in recent years as these batteries show great promise as power sources that can lead us to the electric vehicle (EV) revolution. The development of new materials for Li-ion batteries is the focus of research in prominent groups in the field of materials science throughout the world. Li-ion batteries can be considered to be the most impressive success story of modern electrochemistry in the last two decades. They power most of today's portable devices, and seem to overcome the psychological barriers against the use of such high energy density devices on a larger scale for more demanding applications, such as EV. Since this field is advancing rapidly and attracting an increasing number of researchers, it is important to provide current and timely updates of this constantly changing technology. In this review, we describe the key aspects of Li-ion batteries: the basic science behind their operation, the most relevant components, anodes, cathodes, electrolyte solutions, as well as important future directions for R&D of advanced Li-ion batteries for demanding use, such as EV and load-leveling applications.

5,531 citations

Journal ArticleDOI
TL;DR: The current understanding on Li anodes is summarized, the recent key progress in materials design and advanced characterization techniques are highlighted, and the opportunities and possible directions for future development ofLi anodes in applications are discussed.
Abstract: Lithium-ion batteries have had a profound impact on our daily life, but inherent limitations make it difficult for Li-ion chemistries to meet the growing demands for portable electronics, electric vehicles and grid-scale energy storage. Therefore, chemistries beyond Li-ion are currently being investigated and need to be made viable for commercial applications. The use of metallic Li is one of the most favoured choices for next-generation Li batteries, especially Li-S and Li-air systems. After falling into oblivion for several decades because of safety concerns, metallic Li is now ready for a revival, thanks to the development of investigative tools and nanotechnology-based solutions. In this Review, we first summarize the current understanding on Li anodes, then highlight the recent key progress in materials design and advanced characterization techniques, and finally discuss the opportunities and possible directions for future development of Li anodes in applications.

4,302 citations

Journal ArticleDOI
TL;DR: The goal in this review is to survey the recent key developments and issues within ionic-liquid research in these areas, and to generate interest in the wider community and encourage others to make use of ionic liquids in tackling scientific challenges.
Abstract: Ionic liquids are room-temperature molten salts, composed mostly of organic ions that may undergo almost unlimited structural variations. This review covers the newest aspects of ionic liquids in applications where their ion conductivity is exploited; as electrochemical solvents for metal/semiconductor electrodeposition, and as batteries and fuel cells where conventional media, organic solvents (in batteries) or water (in polymer-electrolyte-membrane fuel cells), fail. Biology and biomimetic processes in ionic liquids are also discussed. In these decidedly different materials, some enzymes show activity that is not exhibited in more traditional systems, creating huge potential for bioinspired catalysis and biofuel cells. Our goal in this review is to survey the recent key developments and issues within ionic-liquid research in these areas. As well as informing materials scientists, we hope to generate interest in the wider community and encourage others to make use of ionic liquids in tackling scientific challenges.

4,098 citations