scispace - formally typeset
Search or ask a question

Recent publications from the Alzheimer's Disease Neuroimaging Initiative: Reviewing progress toward improved AD clinical trials

TL;DR: The Alzheimer's Disease Neuroimaging Initiative (ADNI) has continued development and standardization of methodologies for biomarkers and has provided an increased depth and breadth of data available to qualified researchers.
About: The article was published on 2017-04-01 and is currently open access. It has received 169 citations till now. The article focuses on the topics: Alzheimer's Disease Neuroimaging Initiative & Biomarker (medicine).
Citations
More filters
Journal ArticleDOI
TL;DR: A deep learning algorithm is built and validated predicting the individual diagnosis of Alzheimer's disease and mild cognitive impairment who will convert to AD (c-MCI) based on a single cross-sectional brain structural MRI scan, demonstrating that it is exploitable by not-trained operators and likely to be generalizable to unseen patient data.

366 citations

Journal ArticleDOI
TL;DR: Select topics that provide insights into AD progression are discussed and how this knowledge may improve clinical trials are outlined.
Abstract: Introduction The overall goal of the Alzheimer's Disease Neuroimaging Initiative (ADNI) is to validate biomarkers for Alzheimer's disease (AD) clinical trials. ADNI is a multisite, longitudinal, observational study that has collected many biomarkers since 2004. Recent publications highlight the multifactorial nature of late-onset AD. We discuss selected topics that provide insights into AD progression and outline how this knowledge may improve clinical trials. Methods We used standard methods to identify nearly 600 publications using ADNI data from 2016 and 2017 (listed in Supplementary Material and searchable at http://adni.loni.usc.edu/news-publications/publications/). Results (1) Data-driven AD progression models supported multifactorial interactions rather than a linear cascade of events. (2) β-Amyloid (Aβ) deposition occurred concurrently with functional connectivity changes within the default mode network in preclinical subjects and was followed by specific and progressive disconnection of functional and anatomical networks. (3) Changes in functional connectivity, volumetric measures, regional hypometabolism, and cognition were detectable at subthreshold levels of Aβ deposition. 4. Tau positron emission tomography imaging studies detailed a specific temporal and spatial pattern of tau pathology dependent on prior Aβ deposition, and related to subsequent cognitive decline. 5. Clustering studies using a wide range of modalities consistently identified a "typical AD" subgroup and a second subgroup characterized by executive impairment and widespread cortical atrophy in preclinical and prodromal subjects. 6. Vascular pathology burden may act through both Aβ dependent and independent mechanisms to exacerbate AD progression. 7. The APOE e4 allele interacted with cerebrovascular disease to impede Aβ clearance mechanisms. 8. Genetic approaches identified novel genetic risk factors involving a wide range of processes, and demonstrated shared genetic risk for AD and vascular disorders, as well as the temporal and regional pathological associations of established AD risk alleles. 9. Knowledge of early pathological changes guided the development of novel prognostic biomarkers for preclinical subjects. 10. Placebo populations of randomized controlled clinical trials had highly variable trajectories of cognitive change, underscoring the importance of subject selection and monitoring. 11. Selection criteria based on Aβ positivity, hippocampal volume, baseline cognitive/functional measures, and APOE e4 status in combination with improved cognitive outcome measures were projected to decrease clinical trial duration and cost. 12. Multiple concurrent therapies targeting vascular health and other AD pathology in addition to Aβ may be more effective than single therapies. Discussion ADNI publications from 2016 and 2017 supported the idea of AD as a multifactorial disease and provided insights into the complexities of AD disease progression. These findings guided the development of novel biomarkers and suggested that subject selection on the basis of multiple factors may lower AD clinical trial costs and duration. The use of multiple concurrent therapies in these trials may prove more effective in reversing AD disease progression.

269 citations


Cites background or result from "Recent publications from the Alzhei..."

  • ...This may be due to the inclusion of subjects with SNAP or isolated Ab pathology (IAP) that is likely either an early stage in which neuronal injury has not yet been seen or another amyloid-related disease....

    [...]

  • ...The efficacy of multimodal classification is well established [7], but the simultaneous measurement of all biomarkers required for this approach is time consuming, costly, and invasive....

    [...]

  • ...The view of AD as a disconnection syndrome in which brain regions become successively disconnected both structurally and functionally during the course of AD disease progression is now well established with considerable evidence to support it [7]....

    [...]

  • ...As hypertension, high cholesterol, and diabetes have long been recognized as AD risk factors [7], the question of howvascular burden affectsADdisease progression is of paramount importance....

    [...]

  • ..., [10]) which then have hinted at highly complex multifactorial mechanisms underlying AD disease progression [7]....

    [...]

Journal ArticleDOI
TL;DR: This paper proposes a novel deep-learning-based framework to discriminate individuals with AD utilizing a multimodal and multiscale deep neural network and delivers 82.4% accuracy and 94.23% sensitivity in classifying individuals with clinical diagnosis of probable AD.
Abstract: Alzheimer's Disease (AD) is a progressive neurodegenerative disease where biomarkers for disease based on pathophysiology may be able to provide objective measures for disease diagnosis and staging. Neuroimaging scans acquired from MRI and metabolism images obtained by FDG-PET provide in-vivo measurements of structure and function (glucose metabolism) in a living brain. It is hypothesized that combining multiple different image modalities providing complementary information could help improve early diagnosis of AD. In this paper, we propose a novel deep-learning-based framework to discriminate individuals with AD utilizing a multimodal and multiscale deep neural network. Our method delivers 82.4% accuracy in identifying the individuals with mild cognitive impairment (MCI) who will convert to AD at 3 years prior to conversion (86.4% combined accuracy for conversion within 1-3 years), a 94.23% sensitivity in classifying individuals with clinical diagnosis of probable AD, and a 86.3% specificity in classifying non-demented controls improving upon results in published literature.

194 citations

Journal ArticleDOI
TL;DR: In this paper, the association of BAs with the "A/T/N" (amyloid, tau, and neurodegeneration) biomarkers for AD: cerebrospinal fluid (CSF), atrophy (magnetic resonance imaging), and brain glucose metabolism (FDG PET).
Abstract: Introduction Bile acids (BAs) are the end products of cholesterol metabolism produced by human and gut microbiome co-metabolism. Recent evidence suggests gut microbiota influence pathological features of Alzheimer's disease (AD) including neuroinflammation and amyloid-β deposition. Method Serum levels of 20 primary and secondary BA metabolites from the AD Neuroimaging Initiative (n = 1562) were measured using targeted metabolomic profiling. We assessed the association of BAs with the "A/T/N" (amyloid, tau, and neurodegeneration) biomarkers for AD: cerebrospinal fluid (CSF) biomarkers, atrophy (magnetic resonance imaging), and brain glucose metabolism ([ 18 F]FDG PET). Results Of 23 BAs and relevant calculated ratios after quality control procedures, three BA signatures were associated with CSF Aβ 1-42 ("A") and three with CSF p-tau181 ("T") (corrected P P Discussion This is the first study to show serum-based BA metabolites are associated with "A/T/N" AD biomarkers, providing further support for a role of BA pathways in AD pathophysiology. Prospective clinical observations and validation in model systems are needed to assess causality and specific mechanisms underlying this association.

175 citations

Journal ArticleDOI
TL;DR: CSF sTREM2 increased in early symptomatic stages of late-onset AD but, unexpectedly, was observed decreased at the earliest asymptomatic phase when only abnormal Aβ pathology but no tau pathology or neurodegeneration, is present.
Abstract: TREM2 is a transmembrane receptor that is predominantly expressed by microglia in the central nervous system. Rare variants in the TREM2 gene increase the risk for late-onset Alzheimer’s disease (AD). Soluble TREM2 (sTREM2) resulting from shedding of the TREM2 ectodomain can be detected in the cerebrospinal fluid (CSF) and is a surrogate measure of TREM2-mediated microglia function. CSF sTREM2 has been previously reported to increase at different clinical stages of AD, however, alterations in relation to Amyloid β-peptide (Aβ) deposition or additional pathological processes in the amyloid cascade (such as tau pathology or neurodegeneration) remain unclear. In the current cross-sectional study, we employed the biomarker-based classification framework recently proposed by the NIA-AA consensus guidelines, in combination with clinical staging, in order to examine the CSF sTREM2 alterations at early asymptomatic and symptomatic stages of AD. A cross-sectional study of 1027 participants of the Alzheimer’s Disease Imaging Initiative (ADNI) cohort, including 43 subjects carrying TREM2 rare genetic variants, was conducted to measure CSF sTREM2 using a previously validated enzyme-linked immunosorbent assay (ELISA). ADNI participants were classified following the A/T/N framework, which we implemented based on the CSF levels of Aβ1-42 (A), phosphorylated tau (T) and total tau as a marker of neurodegeneration (N), at different clinical stages defined by the clinical dementia rating (CDR) score. CSF sTREM2 differed between TREM2 variants, whereas the p.R47H variant had higher CSF sTREM2, p.L211P had lower CSF sTREM2 than non-carriers. We found that CSF sTREM2 increased in early symptomatic stages of late-onset AD but, unexpectedly, we observed decreased CSF sTREM2 levels at the earliest asymptomatic phase when only abnormal Aβ pathology (A+) but no tau pathology or neurodegeneration (TN-), is present. Aβ pathology (A) and tau pathology/neurodegeneration (TN) have differing associations with CSF sTREM2. While tau-related neurodegeneration is associated with an increase in CSF sTREM2, Aβ pathology in the absence of downstream tau-related neurodegeneration is associated with a decrease in CSF sTREM2.

171 citations

References
More filters
Journal ArticleDOI
19 Jul 2002-Science
TL;DR: It has been more than 10 years since it was first proposed that the neurodegeneration in Alzheimer's disease (AD) may be caused by deposition of amyloid β-peptide in plaques in brain tissue and the rest of the disease process is proposed to result from an imbalance between Aβ production and Aβ clearance.
Abstract: It has been more than 10 years since it was first proposed that the neurodegeneration in Alzheimer9s disease (AD) may be caused by deposition of amyloid β-peptide (Aβ) in plaques in brain tissue. According to the amyloid hypothesis, accumulation of Aβ in the brain is the primary influence driving AD pathogenesis. The rest of the disease process, including formation of neurofibrillary tangles containing tau protein, is proposed to result from an imbalance between Aβ production and Aβ clearance.

12,652 citations


"Recent publications from the Alzhei..." refers background in this paper

  • ...The amyloid cascade hypothesis [256] has dominated research over the last two decades, to the point that diagnostic criteria for AD now include Ab abnormalities....

    [...]

Journal ArticleDOI
TL;DR: This article reviews studies investigating complex brain networks in diverse experimental modalities and provides an accessible introduction to the basic principles of graph theory and highlights the technical challenges and key questions to be addressed by future developments in this rapidly moving field.
Abstract: Recent developments in the quantitative analysis of complex networks, based largely on graph theory, have been rapidly translated to studies of brain network organization. The brain's structural and functional systems have features of complex networks--such as small-world topology, highly connected hubs and modularity--both at the whole-brain scale of human neuroimaging and at a cellular scale in non-human animals. In this article, we review studies investigating complex brain networks in diverse experimental modalities (including structural and functional MRI, diffusion tensor imaging, magnetoencephalography and electroencephalography in humans) and provide an accessible introduction to the basic principles of graph theory. We also highlight some of the technical challenges and key questions to be addressed by future developments in this rapidly moving field.

9,700 citations


"Recent publications from the Alzhei..." refers background in this paper

  • ...generate measures (strength, weighted local efficiency, weighted clustering coefficient, and characteristic path length) that describe the organization of the network [319,320]....

    [...]

Journal ArticleDOI
TL;DR: A conceptual framework and operational research criteria are proposed, based on the prevailing scientific evidence to date, to test and refine these models with longitudinal clinical research studies and it is hoped that these recommendations will provide a common rubric to advance the study of preclinical AD.
Abstract: The pathophysiological process of Alzheimer's disease (AD) is thought to begin many years before the diagnosis of AD dementia. This long "preclinical" phase of AD would provide a critical opportunity for therapeutic intervention; however, we need to further elucidate the link between the pathological cascade of AD and the emergence of clinical symptoms. The National Institute on Aging and the Alzheimer's Association convened an international workgroup to review the biomarker, epidemiological, and neuropsychological evidence, and to develop recommendations to determine the factors which best predict the risk of progression from "normal" cognition to mild cognitive impairment and AD dementia. We propose a conceptual framework and operational research criteria, based on the prevailing scientific evidence to date, to test and refine these models with longitudinal clinical research studies. These recommendations are solely intended for research purposes and do not have any clinical implications at this time. It is hoped that these recommendations will provide a common rubric to advance the study of preclinical AD, and ultimately, aid the field in moving toward earlier intervention at a stage of AD when some disease-modifying therapies may be most efficacious.

5,671 citations


"Recent publications from the Alzhei..." refers background in this paper

  • ...The importance of Ab status is underscored by its inclusion in the revised diagnostic criteria for AD [123] and by its use in the selection of asymptomatic subjects likely to progress for therapeutic clinical trials....

    [...]

Journal ArticleDOI
TL;DR: This work proposes a model that relates disease stage to AD biomarkers in which Abeta biomarkers become abnormal first, before neurodegenerative biomarkers and cognitive symptoms, and neurodegnerative biomarker become abnormal later, and correlate with clinical symptom severity.
Abstract: Summary Currently available evidence strongly supports the position that the initiating event in Alzheimer's disease (AD) is related to abnormal processing of β-amyloid (Aβ) peptide, ultimately leading to formation of Aβ plaques in the brain. This process occurs while individuals are still cognitively normal. Biomarkers of brain β-amyloidosis are reductions in CSF Aβ 42 and increased amyloid PET tracer retention. After a lag period, which varies from patient to patient, neuronal dysfunction and neurodegeneration become the dominant pathological processes. Biomarkers of neuronal injury and neurodegeneration are increased CSF tau and structural MRI measures of cerebral atrophy. Neurodegeneration is accompanied by synaptic dysfunction, which is indicated by decreased fluorodeoxyglucose uptake on PET. We propose a model that relates disease stage to AD biomarkers in which Aβ biomarkers become abnormal first, before neurodegenerative biomarkers and cognitive symptoms, and neurodegenerative biomarkers become abnormal later, and correlate with clinical symptom severity.

3,953 citations


"Recent publications from the Alzhei..." refers background in this paper

  • ...Knowledge of disease progression has guided this development; the effectiveness of established biomarkers at diagnostic and prognostic challenges reflects their position in the temporal ordering of biomarkers as described by the first model of the pathological cascade [482]....

    [...]

Related Papers (5)