scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Recent Research Developments of Perovskite Solar Cells

01 Oct 2014-Chinese Journal of Chemistry (John Wiley & Sons, Ltd)-Vol. 32, Iss: 10, pp 957-963
TL;DR: In this article, a review of perovskite materials and solar cell devices is presented, including new material developments, structures, and fabrication methods, focusing on device structures, charge transfer mechanism and stability properties.
Abstract: For the first time in 2009, the inorganic-organic hybrid perovskite materials were applied in liquid dye-sensitized solar cells. In 2013, the power conversion efficiency successfully reached 15%, followed by great amount of research papers bursting out. Till August 2014, the highest efficiency is certified to 17.9%, and the reported efficiency is even up to 19.3%. They quickly go beyond dye-sensitized solar cells and organic solar cells. It is expected the perovskite has its efficiency same to the single-crystal silicon cells. The "game changer" of solar cells is coming. The perovskite solar cells are cheap and easily to be made, which will benefit both science and industry. This review summarized recent development of both perovskite materials and solar cell devices, not only including new material developments of perovskite compositions, structures, and fabrication methods, but also focusing on device structures, charge transfer mechanism and stability properties of perovskite solar cells. Their perspective is also estimated.
Citations
More filters
Journal ArticleDOI
TL;DR: This review provides a systematical summary of the methods for morphology control and enlightens us to exploit new technologies for large-scale, low-cost and high-performance perovskite solar cells.
Abstract: In the past two years, the power conversion efficiency (PCE) of organic–inorganic hybrid perovskite solar cells has significantly increased up to 20.1%. These state-of-the-art new devices surpass other third-generation solar cells to become the most promising rival to the silicon-based solar cells. Since the morphology of the perovskite film is one of the most crucial factors to affect the performance of the device, many approaches have been developed for its improvement. This review provides a systematical summary of the methods for morphology control. Introductions and discussions on the mechanisms and relevant hotspots are also given. Understanding the growth process of perovskite crystallites has great benefits for further efficiency improvement and enlightens us to exploit new technologies for large-scale, low-cost and high-performance perovskite solar cells.

152 citations

Journal ArticleDOI
TL;DR: This article focuses on organic materials owing to their ease of preparation and manipulation, and this is nicely combined with the potential tuning of their properties through chemical synthesis.
Abstract: The photovoltaic field is currently experiencing the "perovskite revolution". These materials have been known for decades, but only recently have they been applied in solid-state solar cells to obtain outstanding power conversion efficiencies. Given that the variety of perovskites used so far is limited, a lot of attention has been devoted to the development of suitable organic charge-transport materials to improve device performance. In this article, we will focus on the most promising materials able to transport electrons or holes from a structural point of view. Thereby, we focus on organic materials owing to their ease of preparation and manipulation, and this is nicely combined with the potential tuning of their properties through chemical synthesis.

104 citations

Journal ArticleDOI
TL;DR: In this article, the authors summarized recent development of the key materials and technologies applied in flexible perovskite solar cells (PSCs), including flexible substrates, transparent and conductive electrodes, and interfacial materials.

65 citations

Journal ArticleDOI
TL;DR: In this article, a thin layer of PEO was applied to the electron transport layer (ETL) of perovskite solar cells to improve the conversion efficiency of the cells.
Abstract: Interface engineering is an important and efficient way to further improve the conversion efficiency of perovskite solar cells. In this study, we report the modification of the electron transport layer (ETL) using a thin layer of PEO. Characterizations showed that PEO was uniformly coated on top of the original TiOx ETL, without resulting in an evident change of the surface morphology, hydrophilic ability or transparency. With the interface dipole formed at the interface, the work function of the ETL greatly decreased. Compared with devices with TiOx only, devices based on the modified ETL gave a nearly 15% enhancement to the overall conversion efficiency, with both Voc and Jsc improved. Further studies showed that the improved performance could mainly be attributed to the better retardation of back recombination and the enhanced electron collection efficiency by means of the PEO thin layer modification.

53 citations

Journal ArticleDOI
TL;DR: In this article, single and mixed-halide perovskite solar cells (PSCs) have attracted a lot of research attention in recent years due to their solution processability, lightweight and excellent photoelectric convexity.
Abstract: Single and mixed-halide perovskite solar cells (PSCs) have attracted a lot of research attention in recent years due to their solution process-ability, lightweight and excellent photoelectric conve...

46 citations

References
More filters
Journal ArticleDOI
TL;DR: Two organolead halide perovskite nanocrystals were found to efficiently sensitize TiO(2) for visible-light conversion in photoelectrochemical cells, which exhibit strong band-gap absorptions as semiconductors.
Abstract: Two organolead halide perovskite nanocrystals, CH3NH3PbBr3 and CH3NH3PbI3, were found to efficiently sensitize TiO2 for visible-light conversion in photoelectrochemical cells. When self-assembled on mesoporous TiO2 films, the nanocrystalline perovskites exhibit strong band-gap absorptions as semiconductors. The CH3NH3PbI3-based photocell with spectral sensitivity of up to 800 nm yielded a solar energy conversion efficiency of 3.8%. The CH3NH3PbBr3-based cell showed a high photovoltage of 0.96 V with an external quantum conversion efficiency of 65%.

16,634 citations

Journal ArticleDOI
TL;DR: In this article, an upper theoretical limit for the efficiency of p−n junction solar energy converters, called the detailed balance limit of efficiency, has been calculated for an ideal case in which the only recombination mechanism of holeelectron pairs is radiative as required by the principle of detailed balance.
Abstract: In order to find an upper theoretical limit for the efficiency of p‐n junction solar energy converters, a limiting efficiency, called the detailed balance limit of efficiency, has been calculated for an ideal case in which the only recombination mechanism of hole‐electron pairs is radiative as required by the principle of detailed balance. The efficiency is also calculated for the case in which radiative recombination is only a fixed fraction fc of the total recombination, the rest being nonradiative. Efficiencies at the matched loads have been calculated with band gap and fc as parameters, the sun and cell being assumed to be blackbodies with temperatures of 6000°K and 300°K, respectively. The maximum efficiency is found to be 30% for an energy gap of 1.1 ev and fc = 1. Actual junctions do not obey the predicted current‐voltage relationship, and reasons for the difference and its relevance to efficiency are discussed.

11,071 citations

Journal ArticleDOI
02 Nov 2012-Science
TL;DR: A low-cost, solution-processable solar cell, based on a highly crystalline perovskite absorber with intense visible to near-infrared absorptivity, that has a power conversion efficiency of 10.9% in a single-junction device under simulated full sunlight is reported.
Abstract: The energy costs associated with separating tightly bound excitons (photoinduced electron-hole pairs) and extracting free charges from highly disordered low-mobility networks represent fundamental losses for many low-cost photovoltaic technologies. We report a low-cost, solution-processable solar cell, based on a highly crystalline perovskite absorber with intense visible to near-infrared absorptivity, that has a power conversion efficiency of 10.9% in a single-junction device under simulated full sunlight. This "meso-superstructured solar cell" exhibits exceptionally few fundamental energy losses; it can generate open-circuit photovoltages of more than 1.1 volts, despite the relatively narrow absorber band gap of 1.55 electron volts. The functionality arises from the use of mesoporous alumina as an inert scaffold that structures the absorber and forces electrons to reside in and be transported through the perovskite.

9,158 citations

Journal ArticleDOI
18 Jul 2013-Nature
TL;DR: A sequential deposition method for the formation of the perovskite pigment within the porous metal oxide film that greatly increases the reproducibility of their performance and allows the fabrication of solid-state mesoscopic solar cells with unprecedented power conversion efficiencies and high stability.
Abstract: Following pioneering work, solution-processable organic-inorganic hybrid perovskites-such as CH3NH3PbX3 (X = Cl, Br, I)-have attracted attention as light-harvesting materials for mesoscopic solar cells. So far, the perovskite pigment has been deposited in a single step onto mesoporous metal oxide films using a mixture of PbX2 and CH3NH3X in a common solvent. However, the uncontrolled precipitation of the perovskite produces large morphological variations, resulting in a wide spread of photovoltaic performance in the resulting devices, which hampers the prospects for practical applications. Here we describe a sequential deposition method for the formation of the perovskite pigment within the porous metal oxide film. PbI2 is first introduced from solution into a nanoporous titanium dioxide film and subsequently transformed into the perovskite by exposing it to a solution of CH3NH3I. We find that the conversion occurs within the nanoporous host as soon as the two components come into contact, permitting much better control over the perovskite morphology than is possible with the previously employed route. Using this technique for the fabrication of solid-state mesoscopic solar cells greatly increases the reproducibility of their performance and allows us to achieve a power conversion efficiency of approximately 15 per cent (measured under standard AM1.5G test conditions on solar zenith angle, solar light intensity and cell temperature). This two-step method should provide new opportunities for the fabrication of solution-processed photovoltaic cells with unprecedented power conversion efficiencies and high stability equal to or even greater than those of today's best thin-film photovoltaic devices.

8,427 citations

Journal ArticleDOI
18 Oct 2013-Science
TL;DR: In this article, transient absorption and photoluminescence-quenching measurements were performed to determine the electron-hole diffusion lengths, diffusion constants, and lifetimes in mixed halide and triiodide perovskite absorbers.
Abstract: Organic-inorganic perovskites have shown promise as high-performance absorbers in solar cells, first as a coating on a mesoporous metal oxide scaffold and more recently as a solid layer in planar heterojunction architectures. Here, we report transient absorption and photoluminescence-quenching measurements to determine the electron-hole diffusion lengths, diffusion constants, and lifetimes in mixed halide (CH3NH3PbI(3-x)Cl(x)) and triiodide (CH3NH3PbI3) perovskite absorbers. We found that the diffusion lengths are greater than 1 micrometer in the mixed halide perovskite, which is an order of magnitude greater than the absorption depth. In contrast, the triiodide absorber has electron-hole diffusion lengths of ~100 nanometers. These results justify the high efficiency of planar heterojunction perovskite solar cells and identify a critical parameter to optimize for future perovskite absorber development.

8,199 citations

Trending Questions (1)
Who invented perovskite solar cell?

The perovskite solar cells are cheap and easily to be made, which will benefit both science and industry.