scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Receptor-ligand based molecular interaction to discover adjuvant for immune cell TLRs to develop next-generation vaccine.

TL;DR: The significance of the study deals with the identification of adjuvant (ligand) for human TLRs individually which assist in the development of the optimal highly immunogenic vaccine.
About: This article is published in International Journal of Biological Macromolecules.The article was published on 2020-06-01. It has received 17 citations till now. The article focuses on the topics: Immune receptor & Adjuvant.
Citations
More filters
Journal ArticleDOI
22 Dec 2020-PLOS ONE
TL;DR: In this paper, a multiepitope based vaccine (MEV) against SARS-COV-2 was designed by connecting 16 MHC classes I and eleven MHC class II epitopes with suitable linkers and adjuvant.
Abstract: Coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory coronavirus 2 (SARS-COV-2) is a significant threat to global health security. Till date, no completely effective drug or vaccine is available to cure COVID-19. Therefore, an effective vaccine against SARS-COV-2 is crucially needed. This study was conducted to design an effective multiepitope based vaccine (MEV) against SARS-COV-2. Seven highly antigenic proteins of SARS-COV-2 were selected as targets and different epitopes (B-cell and T-cell) were predicted. Highly antigenic and overlapping epitopes were shortlisted. Selected epitopes indicated significant interactions with the HLA-binding alleles and 99.93% coverage of the world's population. Hence, 505 amino acids long MEV was designed by connecting 16 MHC class I and eleven MHC class II epitopes with suitable linkers and adjuvant. MEV construct was non-allergenic, antigenic, stable and flexible. Furthermore, molecular docking followed by molecular dynamics (MD) simulation analyses, demonstrated a stable and strong binding affinity of MEV with human pathogenic toll-like receptors (TLR), TLR3 and TLR8. Finally, MEV codons were optimized for its in silico cloning into Escherichia coli K-12 system, to ensure its increased expression. Designed MEV in present study could be a potential candidate for further vaccine production process against COVID-19. However, to ensure its safety and immunogenic profile, the proposed MEV needs to be experimentally validated.

76 citations

Posted ContentDOI
02 Mar 2020-bioRxiv
TL;DR: In this article, an effective multi-epitope vaccine (MEV) against SARS-COV-2 was designed by connecting sixteen MHC class I and twelve MHCclass II epitopes with suitable linkers and adjuvant.
Abstract: Coronavirus disease 2019 (COVID-19) associated pneumonia caused by severe acute respiratory coronavirus 2 (SARS-COV-2) was first reported in Wuhan, China in December 2019. Till date, no vaccine or completely effective drug is available for the cure of COVID-19. Therefore, an effective vaccine against SARS-COV-2 is needed to be design. This study was conducted to design an effective multi-epitope vaccine (MEV) against SARS-COV-2. Seven antigenic proteins were taken as a target and epitopes (B cell, IFN-γ and T cell) were predicted. Highly antigenic and overlapping epitopes were shortlisted. Selected T cell epitopes indicated significant interactions with the HLA-binding alleles and 99.29% coverage of the world’s population. Finally, 505 amino acids long MEV was designed by connecting sixteen MHC class I and twelve MHC class II epitopes with suitable linkers and adjuvant. Linkers and adjuvant were added to enhance the immunogenicity response of the vaccine. The allergenicity, physiochemical properties, antigenicity and structural details of MEV were analyzed in order to ensure safety and immunogenicity. MEV construct was non-allergenic and antigenic. Molecular docking demonstrated a stable and strong binding affinity of MEV with TLR3 and TLR8. Codon optimization and in silico cloning ensured increased expression in the Escherichia coli K-12 system. However, to ensure its safety and immunogenic profile, the proposed vaccine needs to be experimentally validated.

71 citations

Journal ArticleDOI
TL;DR: Encouraging data obtained from the various in-silico works indicated this vaccine as an effective therapeutic against COVID-19 as well as good docking scores affirmed the stringency of engineered vaccine.

44 citations

Journal ArticleDOI
TL;DR: Results obtained from various in-silico experiments indicate the potency of this vaccine candidate as a probable therapeutic agent against COVID-19, and proposed immunoinformatic approach that can be applied to the currently available coronavirus protein data in the online server for vaccine candidate development.
Abstract: The global emergence of novel coronavirus disease and its rapid global expansion over a short span of time require effective countermeasures to combat it. Development of a specific vaccine can induce an optimal antibody response, thus providing immunity against it. Our study proposes a detailed and comprehensive immunoinformatic approach that can be applied to the currently available coronavirus protein data in the online server for vaccine candidate development. We have identified the receptor binding domain (RBD) of structural spike protein (S1) as a potential target for immunity against COVID- 19 infection. Epitope prediction illustrated cytotoxic T-cell epitopes, helper T-cell epitopes, and B-cell epitopes associated with the target protein. These were joined through specific linkers along with adjuvant beta-defensin located at the N-terminal to create a multi epitope subunit vaccine (MESV). The specificity in the binding of the devised vaccine candidate to the TLR-3 immune cell receptor was evaluated via molecular docking interaction studies. Good docking score combined with robust interactions in the binding cavity certified the stringency of the engineered vaccine. Molecular dynamics simulation data showed minimal variation of the root-mean square deviations (RMSDs) and root-mean-square fluctuations (RMSFs) which confirmed the interaction stability. These results obtained from various in-silico experiments indicate the potency of this vaccine candidate as a probable therapeutic agent against COVID-19. Vaccination strategies targeting conserved epitope-based immune response would be beneficial in providing cross protection across beta-coronaviruses, and such vaccines would be resistant to the ever-evolving viruses.Communicated by Ramaswamy H. Sarma.

14 citations


Cites background from "Receptor-ligand based molecular int..."

  • ...The human beta defensin 3 is a TLR-3 agonist capable of eliciting enhancement in the strength of T-cell and B-cell immune responses (Gupta et al., 2020; Mohan et al., 2013)....

    [...]

Journal ArticleDOI
TL;DR: Sarma et al. as discussed by the authors attempted a structure-based approach utilizing a combination of epitope prediction servers and molecular dynamic (MD) simulations to develop a multi-epitope-based subunit vaccine that involves the two subunits of the spike glycoprotein of SARS-CoV-2 (S1 and S2) coupled with a substantially effective chimeric adjuvant to create stable vaccine constructs.
Abstract: SARS-CoV-2 has been efficient in ensuring that many countries are brought to a standstill. With repercussions ranging from rampant mortality, fear, paranoia, and economic recession, the virus has brought together countries to look at possible therapeutic countermeasures. With prophylactic interventions possibly months away from being particularly effective, a slew of measures and possibilities concerning the design of vaccines are being worked upon. We attempted a structure-based approach utilizing a combination of epitope prediction servers and Molecular dynamic (MD) simulations to develop a multi-epitope-based subunit vaccine that involves the two subunits of the spike glycoprotein of SARS-CoV-2 (S1 and S2) coupled with a substantially effective chimeric adjuvant to create stable vaccine constructs. The designed constructs were evaluated based on their docking with Toll-Like Receptor (TLR) 4. Our findings provide an epitope-based peptide fragment that can be a potential candidate for the development of a vaccine against SARS-CoV-2. Recent experimental studies based on determining immunodominant regions across the spike glycoprotein of SARS-CoV-2 indicate the presence of the predicted epitopes included in this study. Communicated by Ramaswamy H. Sarma.

13 citations

References
More filters
Journal ArticleDOI
11 Dec 1998-Science
TL;DR: The mammalian Tlr4 protein has been adapted primarily to subserve the recognition of LPS and presumably transduces the LPS signal across the plasma membrane.
Abstract: Mutations of the gene Lps selectively impede lipopolysaccharide (LPS) signal transduction in C3H/HeJ and C57BL/10ScCr mice, rendering them resistant to endotoxin yet highly susceptible to Gram-negative infection. The codominant Lpsd allele of C3H/HeJ mice was shown to correspond to a missense mutation in the third exon of the Toll-like receptor-4 gene (Tlr4), predicted to replace proline with histidine at position 712 of the polypeptide chain. C57BL/10ScCr mice are homozygous for a null mutation of Tlr4. Thus, the mammalian Tlr4 protein has been adapted primarily to subserve the recognition of LPS and presumably transduces the LPS signal across the plasma membrane. Destructive mutations of Tlr4 predispose to the development of Gram-negative sepsis, leaving most aspects of immune function intact.

7,553 citations

Journal ArticleDOI
07 Dec 2000-Nature
TL;DR: It is shown that cellular response to CpG DNA is mediated by a Toll-like receptor, TLR9, and vertebrate immune systems appear to have evolved a specific Toll- like receptor that distinguishes bacterial DNA from self-DNA.
Abstract: DNA from bacteria has stimulatory effects on mammalian immune cells, which depend on the presence of unmethylated CpG dinucleotides in the bacterial DNA. In contrast, mammalian DNA has a low frequency of CpG dinucleotides, and these are mostly methylated; therefore, mammalian DNA does not have immuno-stimulatory activity. CpG DNA induces a strong T-helper-1-like inflammatory response. Accumulating evidence has revealed the therapeutic potential of CpG DNA as adjuvants for vaccination strategies for cancer, allergy and infectious diseases. Despite its promising clinical use, the molecular mechanism by which CpG DNA activates immune cells remains unclear. Here we show that cellular response to CpG DNA is mediated by a Toll-like receptor, TLR9. TLR9-deficient (TLR9-/-) mice did not show any response to CpG DNA, including proliferation of splenocytes, inflammatory cytokine production from macrophages and maturation of dendritic cells. TLR9-/- mice showed resistance to the lethal effect of CpG DNA without any elevation of serum pro-inflammatory cytokine levels. The in vivo CpG-DNA-mediated T-helper type-1 response was also abolished in TLR9-/- mice. Thus, vertebrate immune systems appear to have evolved a specific Toll-like receptor that distinguishes bacterial DNA from self-DNA.

6,188 citations

Journal ArticleDOI
15 Feb 2003-Proteins
TL;DR: Geometrical validation around the Cα is described, with a new Cβ measure and updated Ramachandran plot, and Favored and allowed ϕ,ψ regions are also defined for Pro, pre‐Pro, and Gly (important because Gly ϕ‐ψ angles are more permissive but less accurately determined).
Abstract: Geometrical validation around the Calpha is described, with a new Cbeta measure and updated Ramachandran plot. Deviation of the observed Cbeta atom from ideal position provides a single measure encapsulating the major structure-validation information contained in bond angle distortions. Cbeta deviation is sensitive to incompatibilities between sidechain and backbone caused by misfit conformations or inappropriate refinement restraints. A new phi,psi plot using density-dependent smoothing for 81,234 non-Gly, non-Pro, and non-prePro residues with B < 30 from 500 high-resolution proteins shows sharp boundaries at critical edges and clear delineation between large empty areas and regions that are allowed but disfavored. One such region is the gamma-turn conformation near +75 degrees,-60 degrees, counted as forbidden by common structure-validation programs; however, it occurs in well-ordered parts of good structures, it is overrepresented near functional sites, and strain is partly compensated by the gamma-turn H-bond. Favored and allowed phi,psi regions are also defined for Pro, pre-Pro, and Gly (important because Gly phi,psi angles are more permissive but less accurately determined). Details of these accurate empirical distributions are poorly predicted by previous theoretical calculations, including a region left of alpha-helix, which rates as favorable in energy yet rarely occurs. A proposed factor explaining this discrepancy is that crowding of the two-peptide NHs permits donating only a single H-bond. New calculations by Hu et al. [Proteins 2002 (this issue)] for Ala and Gly dipeptides, using mixed quantum mechanics and molecular mechanics, fit our nonrepetitive data in excellent detail. To run our geometrical evaluations on a user-uploaded file, see MOLPROBITY (http://kinemage.biochem.duke.edu) or RAMPAGE (http://www-cryst.bioc.cam.ac.uk/rampage).

3,963 citations

Journal ArticleDOI
TL;DR: Two freely available web servers for molecular docking that perform structure prediction of protein–protein and protein–small molecule complexes and the SymmDock method predicts the structure of a homomultimer with cyclic symmetry given theructure of the monomeric unit are described.
Abstract: Here, we describe two freely available web servers for molecular docking. The PatchDock method performs structure prediction of protein-protein and protein-small molecule complexes. The SymmDock method predicts the structure of a homomultimer with cyclic symmetry given the structure of the monomeric unit. The inputs to the servers are either protein PDB codes or uploaded protein structures. The services are available at http://bioinfo3d.cs.tau.ac.il. The methods behind the servers are very efficient, allowing large-scale docking experiments.

2,590 citations