scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Recombinant antibodies to the small GTPase Rab6 as conformation sensors.

09 May 2003-Science (American Association for the Advancement of Science)-Vol. 300, Iss: 5621, pp 984-987
TL;DR: An approach, based on antibody phage display, to generate molecular conformation sensors that could be applied to other molecules that can be locked in a particular conformation in vitro is reported.
Abstract: Here we report an approach, based on antibody phage display, to generate molecular conformation sensors. Recombinant antibodies specific to the guanosine triphosphate (GTP)-bound conformation of the small guanosine triphosphatase (GTPase) Rab6, a regulator of membrane traffic, were generated and used to locate Rab6.GTP in fixed cells, and, after green fluorescent protein (GFP) tagging and intracellular expression, to follow Rab6.GTP in vivo. Rab6 was in its GTP-bound conformation on the Golgi apparatus and transport intermediates, and the geometry of transport intermediates was modulated by Rab6 activity. More generally, the same approach could be applied to other molecules that can be locked in a particular conformation in vitro.
Citations
More filters
Journal ArticleDOI
24 Sep 2004-Science
TL;DR: It is reported that AMPA receptors are transported from recycling endosomes to the plasma membrane for LTP and provide a mechanistic link between synaptic potentiation and membrane remodeling during synapse modification.
Abstract: Long-term potentiation (LTP) of synaptic strength, the most established cellular model of information storage in the brain, is expressed by an increase in the number of postsynaptic AMPA receptors. However, the source of AMPA receptors mobilized during LTP is unknown. We report that AMPA receptors are transported from recycling endosomes to the plasma membrane for LTP. Stimuli that triggered LTP promoted not only AMPA receptor insertion but also generalized recycling of cargo and membrane from endocytic compartments. Thus, recycling endosomes supply AMPA receptors for LTP and provide a mechanistic link between synaptic potentiation and membrane remodeling during synapse modification.

719 citations

Journal ArticleDOI
TL;DR: It is demonstrated that chromobodies can recognize and trace antigens in different subcellular compartments throughout S phase and mitosis.
Abstract: We fused the epitope-recognizing fragment of heavy-chain antibodies from Camelidae sp. with fluorescent proteins to generate fluorescent, antigen-binding nanobodies (chromobodies) that can be expressed in living cells. We demonstrate that chromobodies can recognize and trace antigens in different subcellular compartments throughout S phase and mitosis. Chromobodies should enable new functional studies, as potentially any antigenic structure can be targeted and traced in living cells in this fashion.

635 citations

Journal ArticleDOI
TL;DR: The regulatory mechanisms for dynamic protein palmitoylation and the emerging roles of protein palMIToylation in various aspects of pathophysiology, including neuronal development and synaptic plasticity are discussed.
Abstract: Protein palmitoylation, a classical and common lipid modification, regulates diverse aspects of neuronal protein trafficking and function. The reversible nature of palmitoylation provides a potential general mechanism for protein shuttling between intracellular compartments. The recent discovery of palmitoylating enzymes--a large DHHC (Asp-His-His-Cys) protein family--and the development of new proteomic and imaging methods have accelerated palmitoylation analysis. It is becoming clear that individual DHHC enzymes generate and maintain the specialized compartmentalization of substrates in polarized neurons. Here, we discuss the regulatory mechanisms for dynamic protein palmitoylation and the emerging roles of protein palmitoylation in various aspects of pathophysiology, including neuronal development and synaptic plasticity.

524 citations

Journal ArticleDOI
TL;DR: The amenability of in vitro display to high-throughput applications broadens the prospects for their wider use in basic and applied research.
Abstract: In vitro display technologies, best exemplified by phage and yeast display, were first described for the selection of antibodies some 20 years ago. Since then, many antibodies have been selected and improved upon using these methods. Although it is not widely recognized, many of the antibodies derived using in vitro display methods have properties that would be extremely difficult, if not impossible, to obtain by immunizing animals. The first antibodies derived using in vitro display methods are now in the clinic, with many more waiting in the wings. Unlike immunization, in vitro display permits the use of defined selection conditions and provides immediate availability of the sequence encoding the antibody. The amenability of in vitro display to high-throughput applications broadens the prospects for their wider use in basic and applied research.

499 citations

Journal ArticleDOI
TL;DR: Some opportunities and achievements are summarized, e.g., the generation of antibodies which could not be generated otherwise, and the design of antibody properties by different panning strategies, including the adjustment of kinetic parameters.
Abstract: With six approved products and more than 60 candidates in clinical testing, human monoclonal antibody discovery by phage display is well established as a robust and reliable source for the generation of therapeutic antibodies. While a vast diversity of library generation philosophies and selection strategies have been conceived, the power of molecular design offered by controlling the in vitro selection step is still to be recognized by a broader audience outside of the antibody engineering community. Here, we summarize some opportunities and achievements, e.g., the generation of antibodies which could not be generated otherwise, and the design of antibody properties by different panning strategies, including the adjustment of kinetic parameters.

425 citations

References
More filters
Journal ArticleDOI
TL;DR: In this review, functions of small G proteins and their modes of activation and action are described.
Abstract: Small GTP-binding proteins (G proteins) exist in eukaryotes from yeast to human and constitute a superfamily consisting of more than 100 members. This superfamily is structurally classified into at least five families: the Ras, Rho, Rab, Sar1/Arf, and Ran families. They regulate a wide variety of cell functions as biological timers (biotimers) that initiate and terminate specific cell functions and determine the periods of time for the continuation of the specific cell functions. They furthermore play key roles in not only temporal but also spatial determination of specific cell functions. The Ras family regulates gene expression, the Rho family regulates cytoskeletal reorganization and gene expression, the Rab and Sar1/Arf families regulate vesicle trafficking, and the Ran family regulates nucleocytoplasmic transport and microtubule organization. Many upstream regulators and downstream effectors of small G proteins have been isolated, and their modes of activation and action have gradually been elucidated. Cascades and cross-talks of small G proteins have also been clarified. In this review, functions of small G proteins and their modes of activation and action are described.

2,520 citations

Journal ArticleDOI
TL;DR: Human antibody fragments with many different binding specificities have been isolated from the same phage repertoire, including haptens, carbohydrates, secreted and cell surface proteins, viral coat proteins, and intracellular antigens from the lumen of the endoplasmic reticulum and the nucleus.
Abstract: Antibody fragments of predetermined binding specificity have recently been constructed from repertoires of antibody V genes, bypassing hybridoma technology and even immunization. The V gene repertoires are harvested from populations of lymphocytes, or assembled in vitro, and cloned for display of associated heavy and light chain variable domains on the surface of filamentous bacteriophage. Rare phage are selected from the repertoire by binding to antigen; soluble antibody fragments are expressed from infected bacteria; and the affinity of binding of selected antibodies is improved by mutation. The process mimics immune selection, and antibodies with many different binding specificities have been isolated from the same phage repertoire. Thus human antibody fragments have been isolated with specificities against both foreign and self antigens, including haptens, carbohydrates, secreted and cell surface proteins, viral coat proteins, and intracellular antigens from the lumen of the endoplasmic reticulum and ...

1,973 citations

Journal ArticleDOI
13 Oct 2000-Science
TL;DR: A method called FLAIR (fluorescence activation indicator for Rho proteins) was developed to quantify the spatio-temporal dynamics of the Rac1 nucleotide state in living cells, revealing precise spatial control of growth factor-induced Rac activation, in membrane ruffles and in a gradient of activation at the leading edge of motile cells.
Abstract: Signaling proteins are thought to be tightly regulated spatially and temporally in order to generate specific and localized effects. For Rac and other small guanosine triphosphatases, binding to guanosine triphosphate leads to interaction with downstream targets and regulates subcellular localization. A method called FLAIR (fluorescence activation indicator for Rho proteins) was developed to quantify the spatio-temporal dynamics of the Rac1 nucleotide state in living cells. FLAIR revealed precise spatial control of growth factor-induced Rac activation, in membrane ruffles and in a gradient of activation at the leading edge of motile cells. FLAIR exemplifies a generally applicable approach for examining spatio-temporal control of protein activity.

703 citations

Journal ArticleDOI
TL;DR: Progress in rational and evolutionary engineering methods, the structural implications of these results, as well as some examples where stability engineering has been successfully applied are summarized.

659 citations

Journal ArticleDOI
29 Mar 2002-Science
TL;DR: During interphase, Ran-GTP was highly enriched in the nucleoplasm, and a steep concentration difference between nuclear and cytoplasmic Ran-gTP was established, providing evidence for a Ran- GTP gradient surrounding chromosomes throughout the cell cycle.
Abstract: The small guanosine triphosphatase Ran is loaded with guanosine triphosphate (GTP) by the chromatin-bound guanine nucleotide exchange factor RCC1 and releases import cargoes in the nucleus during interphase. In mitosis, Ran-GTP promotes spindle assembly around chromosomes by locally discharging cargoes that regulate microtubule dynamics and organization. We used fluorescence resonance energy transfer-based biosensors to visualize gradients of Ran-GTP and liberated cargoes around chromosomes in mitotic Xenopus egg extracts. Both gradients were required to assemble and maintain spindle structure. During interphase, Ran-GTP was highly enriched in the nucleoplasm, and a steep concentration difference between nuclear and cytoplasmic Ran-GTP was established, providing evidence for a Ran-GTP gradient surrounding chromosomes throughout the cell cycle.

566 citations