scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Recovery of cognitive and dynamic motor function following concussion

01 Dec 2007-British Journal of Sports Medicine (BMJ Publishing Group)-Vol. 41, Iss: 12, pp 868-873
TL;DR: In order to fully examine the effects of concussion and determine the optimal time for a safe return to activity, a multi-factorial approach, including both cognitive and motor tasks, should be employed.
Abstract: Objective: Neuropsychological testing has been advocated as an important tool of proper post-concussion management. Although these measures provide information that can be used in the decision of when to return an individual to previous levels of physical activity, they provide little data on motor performance following injury. The purpose of this investigation was to examine the relationship between measures of dynamic motor performance and neuropsychological function following concussion over the course of 28 days. Methods: Participants completed two experimental protocols: gait stability and neuropsychological testing. The gait stability protocol measured whole-body centre of mass motion as subjects walked under conditions of divided and undivided attention. Neuropsychological testing consisted of a computerised battery of tests designed to assess memory, reaction time, processing speed and concussion symptoms. Correlation coefficients were computed between all neuropsychological and gait variables and comparisons of neuropsychological and gait stability post-concussion recovery curves were assessed. Results: Dynamic motor tasks, such as walking under varying conditions of attention, are complex and demanding undertakings, which require a longer recovery time following a concussion than cognitive measures. Little statistical relationship was found between the neuropsychological and gait variables, and the recovery curves of neuropsychological and gait domains were observed to be independent. Conclusions: In order to fully examine the effects of concussion and determine the optimal time for a safe return to activity, a multi-factorial approach, including both cognitive and motor tasks, should be employed.

Content maybe subject to copyright    Report

Citations
More filters
01 Jan 2015
TL;DR: The results of this study show no deficits across a single athletic season, however, caution should still be taken as there is literature supporting late-life detriments due to brain trauma.
Abstract: Context: The effects of concussions on postural stability, both acutely and chronically, have been well studied and noted. However, whether subconcussive impacts lead to these same impairments has not been heavily investigated. Objectives: The primary purpose of this study was to examine the effects of subconcussive impacts on postural stability in NCAA Division I football athletes. We hypothesized that both the subconcussive (SUBC) group and the control (CONT) group would show declines in postural stability following a single fall season. We also hypothesized that there would be no significant differences between SUBC and CONT from preseason to postseason for Balance Error Scoring System total score and Approximate Entropy (ApEn) values. The secondary purpose was to predict deficits in postural stability based on cumulative linear acceleration, cumulative rotational acceleration, total number of impacts, and Head Injury Criterion (HIC). We hypothesized that the total number of impacts and cumulative linear acceleration would predict significant changes in postural stability. Design: This was a prospective longitudinal study. Setting: The Georgia Southern University Biomechanics Laboratory. Participants: 15 NCAA Division 1 collegiate football players were instrumented with the Head Impact Telemetry System (HITS) and 13 non-contact athletes with a fall season were recruited for control participants. Intervention: The 2014 fall football season. Results: No clinically significant deficits in postural stability were measured over the course of a single season. There was an increase in ApEn in the anteroposterior direction for left leg stance in both groups and in the mediolateral direction for double leg stance in SUBC over time. Conclusion: The results of this study show no deficits across a single athletic season. However, caution should still be taken as there is literature supporting late-life detriments due to brain trauma. INDEX WORDS: Subconcussive, Head Impact Telemetry System, postural stability, static stance, BESS, gait, dual task, approximate entropy

3 citations

16 Apr 2020
TL;DR: Among recently concussed collegiate student-athletes, no persistent deficits were identified in VMC beyond clinical recovery when assessed by Dynavision D2, and this VMC exam may not provide a useful means of tracking recovery following concussion due to a substantial practice effect.
Abstract: Background Emerging evidence suggests neurophysiological deficits, such as visual motor coordination (VMC), may persist beyond clinical concussion recovery. Instrumented measurement of upper-limb VMC is critical for neurological evaluation post-concussion and may identify persistent deficits further elucidating persistent neurophysiological impairments not detected by the current clinical assessment battery. Aim The aim of the study was to determine if a VMC test identifies persistent deficits in concussed collegiate student-athletes who have returned to baseline on clinical concussion assessments. Methods Thirteen recently concussed intercollegiate student-athletes (male: 7, 18.9±0.7 years, 175.5±12.4 cm, 75.5±23.2 kg), and 13 matched control student-athletes (male: 7, 19.3±1.1 years, 173.5±11.9 cm, 75.8±19.9 kg) completed two testing sessions (T1: <48 h after clinical recovery; T2: 30 days post-concussion) on a visual motor exam. The outcome measures were A* Average score (average number of lights hit on A* exam), simple visual reaction time (SVRT)-RT, and movement time (SVRT-MT) on the Dynavision D2. The dependent variables were compared with a 2 (group) × 2 (time) repeated measures ANOVAs. Results There was no group interaction in A* average score (F(1,24)=0.036, P=0.849), SVRT-RT (F(1,22)=0.319, P=0.575), and SVRT-MT (F(1,22)=1.179, P=0.188). There was a main effect for time on A* average score (T1: 76.3±10.4 hits; T2: 82.7±11.2 hits; F(1,24)=38.1, P≤0.001) and SVRT-RT (T1: 0.31±0.04; T2: 0.29±0.04 s; F(1,22)=4.9, P=0.039). There was no main effect for SVRT-MT. There were no group differences at either time point. Conclusions Among recently concussed collegiate student-athletes, no persistent deficits were identified in VMC beyond clinical recovery when assessed by Dynavision D2. This VMC exam may not provide a useful means of tracking recovery following concussion likely due to a substantial practice effect. Relevance for patients While post-concussion neurophysiological deficits persist beyond clinical recovery, the laboratory based VMC assessment herein did not identify deficits at critical post-concussion time points. Therefore, other clinically translatable VMC assessments should be further investigated.

3 citations

Journal ArticleDOI
TL;DR: Reporting symptoms at testing time may influence gait under dual-task conditions and sports medicine professionals should be aware that these variables, while unrelated to injury, may affect an athlete's gait upon analysis.
Abstract: CONTEXT Though previous research has focused on examining the effects of concussion history using a dual-task paradigm, the influence of factors like symptoms (unrelated to concussion), gender, and type of sport on gait in college athletes is unknown. OBJECTIVE To examine the effect of concussion history, symptoms, gender, and type of sport (noncontact/limited contact/contact) individually on gait among college athletes. DESIGN Exploratory cross-sectional study. SETTING Laboratory. PARTICIPANTS In total, 98 varsity athletes (age, 18.3 [1.0] y; height, 1.79 [0.11] m; mass, 77.5 [19.2] kg; 27 with concussion history, 58 reported at least one symptom, 44 females; 8 played noncontact sports and 71 played contact sports) walked under single- and dual-task (walking while counting backward by 7) conditions. INTERVENTIONS Not applicable. MAIN OUTCOME MEASURES Dual-task cost (DTC; % difference between single task and dual task) of gait speed, cadence, step length and width, percentage of swing and double-support phases, symptom score, and total symptom severity score. Independent samples t tests and 1-way analysis of variance were conducted (α value = .05). RESULTS Self-reported concussion history resulted in no significant differences (P > .05). Those who reported symptoms at testing time showed significantly greater DTC of step length (mean difference [MD], 2.7%; 95% confidence interval [CI], 0.3% to 5.1%; P = .012), % of swing phase (MD, 1.0%; 95% CI, -0.2 to 2.1%; P = .042), and % of double-support phase (MD, 3.9%; 95% CI, 0.2% to 7.8%; P = .019). Females demonstrated significantly higher DTC of gait speed (MD, 5.3%; 95% CI, 1.3% to 9.3%; P = .005), cadence (MD, 4.0%; 95% CI, 1.4% to 6.5%; P = .002), % of swing phase (MD, 1.2%; 95% CI, 0.1% to 2.3%; P = .019), and % of double-support phase (MD, 4.1%; 95% CI, 0.4% to 7.9%; P = .018). Noncontact sports athletes had significantly greater step width DTC than contact sports athletes (MD, 14.2%; 95% CI, 0.9% to 27.6%; P = .032). CONCLUSIONS Reporting symptoms at testing time may influence gait under dual-task conditions. Additionally, female athletes showed more gait changes during a dual task. Sports medicine professionals should be aware that these variables, while unrelated to injury, may affect an athlete's gait upon analysis.

3 citations

04 Jun 2019
TL;DR: This is the second study to demonstrate decreased ABP accuracy in concussed athletes, using the PACT, and demonstrated the multifactorial nature of ABP, as mental effort during BART, VOMS, and ImPACT, as well as feelings of anxiety and impulsivity, impacted several components ofABP behavior.
Abstract: Following sport-related concussion (SRC), athletes have 2 times increased risk for lower extremity musculoskeletal injury. Perceptual-motor control may be a contributory factor, as motor control deficits have repeatedly been demonstrated in athletes with recent SRC even after clearance for return-to-play. Specifically, deficits in accuracy and actualization of action boundary perception (ABP), or the ability to perceive the limits of available actions to a given athlete, have been demonstrated in collegiate athletes who reported an SRC an average of 264 days prior to testing. The purpose of the present study was to evaluate changes in ABP behavior in more acutely concussed young athletes (Concussed), as well as to further characterize contributing factors to the Perception Action Coupling Task (PACT), a novel test of ABP behavior. Recently concussed (≤21 days prior) 12-18 year old athletes (n=48) and healthy controls (n-24) were recruited to participate in a cross-sectional testing protocol, consisting of the PACT, Immediate Post-concussion Assessment and Cognitive Testing (ImPACT), Vestibular-Ocular Motor Screen (VOMS), Balloon Analog Risk Task (BART), and surveys to measure mental effort for each of the above tests, as well as symptoms of depression, anxiety, impulsivity, and perceived physical development. Concussed was presented the option to return for follow-up testing of all measures after clearance for return-to-play. Concussed demonstrated deficits in ABP accuracy (~5%). Concussed reported significantly higher impulsivity (~9%). At follow-up, Concussed had significantly improved PACT accuracy and response time. Post-hoc analyses revealed an association between higher mental effort for BART and higher anxiety with increased PACT movement time. Conversely, higher impulsivity reduced movement time. Higher effort for VOMS reduced initiation time, whereas higher effort for neurocognition reduced accuracy. This is the second study to demonstrate decreased ABP accuracy in concussed athletes, using the PACT. This study also demonstrated the multifactorial nature of ABP, as mental effort during BART, VOMS, and ImPACT, as well as feelings of anxiety and impulsivity, impacted several components of ABP behavior. ABP accuracy has a relationship with SRC, likely through the constellation of symptoms that result from SRC.

3 citations

References
More filters
Book
01 May 1990
TL;DR: The Fourth Edition of Biomechanics as an Interdiscipline: A Review of the Fourth Edition focuses on biomechanical Electromyography, with a focus on the relationship between Electromyogram and Biomechinical Variables.
Abstract: Preface to the Fourth Edition. 1 Biomechanics as an Interdiscipline. 1.0 Introduction. 1.1 Measurement, Description, Analysis, and Assessment. 1.2 Biomechanics and its Relationship with Physiology and Anatomy. 1.3 Scope of the Textbook. 1.4 References. 2 Signal Processing. 2.0 Introduction. 2.1 Auto- and Cross-Correlation Analyses. 2.2 Frequency Analysis. 2.3 Ensemble Averaging of Repetitive Waveforms. 2.4 References. 3 Kinematics. 3.0 Historical Development and Complexity of Problem. 3.1 Kinematic Conventions. 3.2 Direct Measurement Techniques. 3.3 Imaging Measurement Techniques. 3.4 Processing of Raw Kinematic Data. 3.5 Calculation of Other Kinematic Variables. 3.6 Problems Based on Kinematic Data. 3.7 References. 4 Anthropometry. 4.0 Scope of Anthropometry in Movement Biomechanics. 4.1 Density, Mass, and Inertial Properties. 4.2 Direct Experimental Measures. 4.3 Muscle Anthropometry. 4.4 Problems Based on Anthropometric Data. 4.5 References. 5 Kinetics: Forces and Moments of Force. 5.0 Biomechanical Models. 5.1 Basic Link-Segment Equations-the Free-Body Diagram. 5.2 Force Transducers and Force Plates. 5.3 Bone-on-Bone Forces During Dynamic Conditions. 5.4 Problems Based on Kinetic and Kinematic Data. 5.5 References. 6 Mechanical Work, Energy, and Power. 6.0 Introduction. 6.1 Efficiency. 6.2 Forms of Energy Storage. 6.3 Calculation of Internal and External Work. 6.4 Power Balances at Joints and Within Segments. 6.5 Problems Based on Kinetic and Kinematic Data. 6.6 References. 7 Three-Dimensional Kinematics and Kinetics. 7.0 Introduction. 7.1 Axes Systems. 7.2 Marker and Anatomical Axes Systems. 7.3 Determination of Segment Angular Velocities and Accelerations. 7.4 Kinetic Analysis of Reaction Forces and Moments. 7.5 Suggested Further Reading. 7.6 References. 8 Synthesis of Human Movement-Forward Solutions. 8.0 Introduction. 8.1 Review of Forward Solution Models. 8.2 Mathematical Formulation. 8.3 System Energy. 8.4 External Forces and Torques. 8.5 Designation of Joints. 8.6 Illustrative Example. 8.7 Conclusions. 8.8 References. 9 Muscle Mechanics. 9.0 Introduction. 9.1 Force-Length Characteristics of Muscles. 9.2 Force-Velocity Characteristics. 9.3 Muscle Modeling. 9.4 References. 10 Kinesiological Electromyography. 10.0 Introduction. 10.1 Electrophysiology of Muscle Contraction. 10.2 Recording of the Electromyogram. 10.3 Processing of the Electromyogram,. 10.4 Relationship between Electromyogram and Biomechanical Variables. 10.5 References. 11 Biomechanical Movement Synergies. 11.0 Introduction. 11.1 The Support Moment Synergy. 11.2 Medial/Lateral and Anterior/Posterior Balance in Standing. 11.3 Dynamic Balance during Walking. 11.4 References. APPENDICES. A. Kinematic, Kinetic, and Energy Data. Figure A.1 Walking Trial-Marker Locations and Mass and Frame Rate Information. Table A.1 Raw Coordinate Data (cm). Table A.2( a ) Filtered Marker Kinematics-Rib Cage and Greater Trochanter (Hip). Table A.2( b ) Filtered Marker Kinematics-Femoral Lateral Epicondyle (Knee) and Head of Fibula. Table A.2( c ) Filtered Marker Kinematics-Lateral Malleolus (Ankle) and Heel. Table A.2( d ) Filtered Marker Kinematics-Fifth Metatarsal and Toe. Table A.3( a ) Linear and Angular Kinematics-Foot. Table A.3( b ) Linear and Angular Kinematics-Leg. Table A.3( c ) Linear and Angular Kinematics-Thigh. Table A.3( d ) Linear and Angular Kinematics-1/2 HAT. Table A.4 Relative Joint Angular Kinematics-Ankle, Knee, and Hip. Table A.5( a ) Reaction Forces and Moments of Force-Ankle and Knee. Table A.5( b ) Reaction Forces and Moments of Force-Hip. Table A.6 Segment Potential, Kinetic, and Total Energies-Foot, Leg, Thigh, and1/2 HAT. Table A.7 Power Generation/Absorption and Transfer-Ankle, Knee, and Hip. B. Units and Definitions Related to Biomechanical and Electromyographical Measurements. Table B.1 Base SI Units. Table B.2 Derived SI Units. Index.

9,092 citations

Journal ArticleDOI
Jin Fan1, Bruce D. McCandliss1, Tobias Sommer1, Amir Raz1, Michael I. Posner1 
TL;DR: A study with 40 normal adult subjects indicates that the ANT produces reliable single subject estimates of alerting, orienting, and executive function, and further suggests that the efficiencies of these three networks are uncorrelated.
Abstract: In recent years, three attentional networks have been defined in anatomical and functional terms. These functions involve alerting, orienting, and executive attention. Reaction time measures can be used to quantify the processing efficiency within each of these three networks. The Attention Network Test (ANT) is designed to evaluate alerting, orienting, and executive attention within a single 30-min testing session that can be easily performed by children, patients, and monkeys. A study with 40 normal adult subjects indicates that the ANT produces reliable single subject estimates of alerting, orienting, and executive function, and further suggests that the efficiencies of these three networks are uncorrelated. There are, however, some interactions in which alerting and orienting can modulate the degree of interference from flankers. This procedure may prove to be convenient and useful in evaluating attentional abnormalities associated with cases of brain injury, stroke, schizophrenia, and attention-deficit disorder. The ANT may also serve as an activation task for neuroimaging studies and as a phenotype for the study of the influence of genes on attentional networks.

3,166 citations

Journal ArticleDOI
19 Nov 2003-JAMA
TL;DR: In this paper, a study of 1631 football players from 15 US colleges found that players with concussions exhibited more severe symptoms (mean GSC score 20.93 [95% confidence interval {CI, 15.65-26.21] points higher than that of controls), cognitive impairments (mean SAC score 2.94 [ 95% CI, 1.41 to 2.06], cognitive functioning improved to baseline levels within 5 to 7 days (day 7 SAC mean difference, −0.33;
Abstract: ContextLack of empirical data on recovery time following sport-related concussion hampers clinical decision making about return to play after injury.ObjectiveTo prospectively measure immediate effects and natural recovery course relating to symptoms, cognitive functioning, and postural stability following sport-related concussion.Design, Setting, and ParticipantsProspective cohort study of 1631 football players from 15 US colleges. All players underwent preseason baseline testing on concussion assessment measures in 1999, 2000, and 2001. Ninety-four players with concussion (based on American Academy of Neurology criteria) and 56 noninjured controls underwent assessment of symptoms, cognitive functioning, and postural stability immediately, 3 hours, and 1, 2, 3, 5, 7, and 90 days after injury.Main Outcome MeasuresScores on the Graded Symptom Checklist (GSC), Standardized Assessment of Concussion (SAC), Balance Error Scoring System (BESS), and a neuropsychological test battery.ResultsNo player with concussion was excluded from participation; 79 players with concussion (84%) completed the protocol through day 90. Players with concussion exhibited more severe symptoms (mean GSC score 20.93 [95% confidence interval {CI}, 15.65-26.21] points higher than that of controls), cognitive impairment (mean SAC score 2.94 [95% CI, 1.50-4.38] points lower than that of controls), and balance problems (mean BESS score 5.81 [95% CI, –0.67 to 12.30] points higher than that of controls) immediately after concussion. On average, symptoms gradually resolved by day 7 (GSC mean difference, 0.33; 95% CI, −1.41 to 2.06), cognitive functioning improved to baseline levels within 5 to 7 days (day 7 SAC mean difference, −0.03; 95% CI, −1.33 to 1.26), and balance deficits dissipated within 3 to 5 days after injury (day 5 BESS mean difference, −0.31; 95% CI, −3.02 to 2.40). Mild impairments in cognitive processing and verbal memory evident on neuropsychological testing 2 days after concussion resolved by day 7. There were no significant differences in symptoms or functional impairments in the concussion and control groups 90 days after concussion.ConclusionsCollegiate football players may require several days for recovery of symptoms, cognitive dysfunction, and postural instability after concussion. Further research is required to determine factors that predict variability in recovery time after concussion. Standardized measurement of postconcussive symptoms, cognitive functioning, and postural stability may enhance clinical management of athletes recovering from concussion.

1,484 citations

Journal ArticleDOI
TL;DR: The recommendations for concussion management provided here are based on the most current research and divided into sections on education and prevention, documentation and legal aspects, evaluation and return to play, and other considerations.
Abstract: Objective: To provide athletic trainers, physicians, and other health care professionals with best-practice guidelines for the management of sport-related concussions. Background: An estimated 3.8 ...

1,026 citations

Journal ArticleDOI
TL;DR: A subroutine package is presented in which the amount of smoothing on a set of n noisy datapoints is determined from the data by means of the Generalized Cross-Validation or predicted Mean-Squared Error criteria of Wahba and her collaborators.

987 citations

Related Papers (5)