scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Recovery of cognitive and dynamic motor function following concussion

01 Dec 2007-British Journal of Sports Medicine (BMJ Publishing Group)-Vol. 41, Iss: 12, pp 868-873
TL;DR: In order to fully examine the effects of concussion and determine the optimal time for a safe return to activity, a multi-factorial approach, including both cognitive and motor tasks, should be employed.
Abstract: Objective: Neuropsychological testing has been advocated as an important tool of proper post-concussion management. Although these measures provide information that can be used in the decision of when to return an individual to previous levels of physical activity, they provide little data on motor performance following injury. The purpose of this investigation was to examine the relationship between measures of dynamic motor performance and neuropsychological function following concussion over the course of 28 days. Methods: Participants completed two experimental protocols: gait stability and neuropsychological testing. The gait stability protocol measured whole-body centre of mass motion as subjects walked under conditions of divided and undivided attention. Neuropsychological testing consisted of a computerised battery of tests designed to assess memory, reaction time, processing speed and concussion symptoms. Correlation coefficients were computed between all neuropsychological and gait variables and comparisons of neuropsychological and gait stability post-concussion recovery curves were assessed. Results: Dynamic motor tasks, such as walking under varying conditions of attention, are complex and demanding undertakings, which require a longer recovery time following a concussion than cognitive measures. Little statistical relationship was found between the neuropsychological and gait variables, and the recovery curves of neuropsychological and gait domains were observed to be independent. Conclusions: In order to fully examine the effects of concussion and determine the optimal time for a safe return to activity, a multi-factorial approach, including both cognitive and motor tasks, should be employed.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: The Portable Warrior Test of Tactical Agility (POWAR-TOTAL) is a functional assessment which improves on previous laboratory-based RTD assessments as discussed by the authors, which is a clinically feasible, military relevant assessment that is sensitive to differences between concussed and healthy control service members.
Abstract: Introduction Return-to-duty (RTD) readiness assessment for service members (SM) following concussion requires complex clinical considerations. The Portable Warrior Test of Tactical Agility (POWAR-TOTAL) is a functional assessment which improves on previous laboratory-based RTD assessments. Methods Sixty-four SM diagnosed with concussion and 60 healthy control (HC) SM participated in this study. Group differences were analyzed to validate the POWAR-TOTAL. The High-level Mobility Assessment Test (HiMAT) was used to examine concurrent construct validity. An exploratory logistic regression analysis examined predictive validity. Results The groups were demographically well-matched except for educational level. POWAR-TOTAL measures were statistically significantly different between the groups with moderate to large effect sizes. Concussed participants were less likely to be able to complete all trials of the POWAR-TOTAL. Motor scores correlated highly with HiMAT scores. POWAR-TOTAL motor task performance and membership in the control group was significantly associated with self-reported physical readiness to deploy. Conclusion The POWAR-TOTAL is a clinically feasible, military relevant assessment that is sensitive to differences between concussed and HC SM. This analysis supports the discriminant and construct validity of the POWAR-TOTAL, and may be useful for medical providers evaluating RTD readiness for SM who have sustained a concussion.
Journal ArticleDOI
TL;DR: A review of the literature on multi-domain assessments used in concussion recovery, to inform evidence-based and ecologically valid return-to-play, can be found in this paper .
References
More filters
Book
01 May 1990
TL;DR: The Fourth Edition of Biomechanics as an Interdiscipline: A Review of the Fourth Edition focuses on biomechanical Electromyography, with a focus on the relationship between Electromyogram and Biomechinical Variables.
Abstract: Preface to the Fourth Edition. 1 Biomechanics as an Interdiscipline. 1.0 Introduction. 1.1 Measurement, Description, Analysis, and Assessment. 1.2 Biomechanics and its Relationship with Physiology and Anatomy. 1.3 Scope of the Textbook. 1.4 References. 2 Signal Processing. 2.0 Introduction. 2.1 Auto- and Cross-Correlation Analyses. 2.2 Frequency Analysis. 2.3 Ensemble Averaging of Repetitive Waveforms. 2.4 References. 3 Kinematics. 3.0 Historical Development and Complexity of Problem. 3.1 Kinematic Conventions. 3.2 Direct Measurement Techniques. 3.3 Imaging Measurement Techniques. 3.4 Processing of Raw Kinematic Data. 3.5 Calculation of Other Kinematic Variables. 3.6 Problems Based on Kinematic Data. 3.7 References. 4 Anthropometry. 4.0 Scope of Anthropometry in Movement Biomechanics. 4.1 Density, Mass, and Inertial Properties. 4.2 Direct Experimental Measures. 4.3 Muscle Anthropometry. 4.4 Problems Based on Anthropometric Data. 4.5 References. 5 Kinetics: Forces and Moments of Force. 5.0 Biomechanical Models. 5.1 Basic Link-Segment Equations-the Free-Body Diagram. 5.2 Force Transducers and Force Plates. 5.3 Bone-on-Bone Forces During Dynamic Conditions. 5.4 Problems Based on Kinetic and Kinematic Data. 5.5 References. 6 Mechanical Work, Energy, and Power. 6.0 Introduction. 6.1 Efficiency. 6.2 Forms of Energy Storage. 6.3 Calculation of Internal and External Work. 6.4 Power Balances at Joints and Within Segments. 6.5 Problems Based on Kinetic and Kinematic Data. 6.6 References. 7 Three-Dimensional Kinematics and Kinetics. 7.0 Introduction. 7.1 Axes Systems. 7.2 Marker and Anatomical Axes Systems. 7.3 Determination of Segment Angular Velocities and Accelerations. 7.4 Kinetic Analysis of Reaction Forces and Moments. 7.5 Suggested Further Reading. 7.6 References. 8 Synthesis of Human Movement-Forward Solutions. 8.0 Introduction. 8.1 Review of Forward Solution Models. 8.2 Mathematical Formulation. 8.3 System Energy. 8.4 External Forces and Torques. 8.5 Designation of Joints. 8.6 Illustrative Example. 8.7 Conclusions. 8.8 References. 9 Muscle Mechanics. 9.0 Introduction. 9.1 Force-Length Characteristics of Muscles. 9.2 Force-Velocity Characteristics. 9.3 Muscle Modeling. 9.4 References. 10 Kinesiological Electromyography. 10.0 Introduction. 10.1 Electrophysiology of Muscle Contraction. 10.2 Recording of the Electromyogram. 10.3 Processing of the Electromyogram,. 10.4 Relationship between Electromyogram and Biomechanical Variables. 10.5 References. 11 Biomechanical Movement Synergies. 11.0 Introduction. 11.1 The Support Moment Synergy. 11.2 Medial/Lateral and Anterior/Posterior Balance in Standing. 11.3 Dynamic Balance during Walking. 11.4 References. APPENDICES. A. Kinematic, Kinetic, and Energy Data. Figure A.1 Walking Trial-Marker Locations and Mass and Frame Rate Information. Table A.1 Raw Coordinate Data (cm). Table A.2( a ) Filtered Marker Kinematics-Rib Cage and Greater Trochanter (Hip). Table A.2( b ) Filtered Marker Kinematics-Femoral Lateral Epicondyle (Knee) and Head of Fibula. Table A.2( c ) Filtered Marker Kinematics-Lateral Malleolus (Ankle) and Heel. Table A.2( d ) Filtered Marker Kinematics-Fifth Metatarsal and Toe. Table A.3( a ) Linear and Angular Kinematics-Foot. Table A.3( b ) Linear and Angular Kinematics-Leg. Table A.3( c ) Linear and Angular Kinematics-Thigh. Table A.3( d ) Linear and Angular Kinematics-1/2 HAT. Table A.4 Relative Joint Angular Kinematics-Ankle, Knee, and Hip. Table A.5( a ) Reaction Forces and Moments of Force-Ankle and Knee. Table A.5( b ) Reaction Forces and Moments of Force-Hip. Table A.6 Segment Potential, Kinetic, and Total Energies-Foot, Leg, Thigh, and1/2 HAT. Table A.7 Power Generation/Absorption and Transfer-Ankle, Knee, and Hip. B. Units and Definitions Related to Biomechanical and Electromyographical Measurements. Table B.1 Base SI Units. Table B.2 Derived SI Units. Index.

9,092 citations

Journal ArticleDOI
Jin Fan1, Bruce D. McCandliss1, Tobias Sommer1, Amir Raz1, Michael I. Posner1 
TL;DR: A study with 40 normal adult subjects indicates that the ANT produces reliable single subject estimates of alerting, orienting, and executive function, and further suggests that the efficiencies of these three networks are uncorrelated.
Abstract: In recent years, three attentional networks have been defined in anatomical and functional terms. These functions involve alerting, orienting, and executive attention. Reaction time measures can be used to quantify the processing efficiency within each of these three networks. The Attention Network Test (ANT) is designed to evaluate alerting, orienting, and executive attention within a single 30-min testing session that can be easily performed by children, patients, and monkeys. A study with 40 normal adult subjects indicates that the ANT produces reliable single subject estimates of alerting, orienting, and executive function, and further suggests that the efficiencies of these three networks are uncorrelated. There are, however, some interactions in which alerting and orienting can modulate the degree of interference from flankers. This procedure may prove to be convenient and useful in evaluating attentional abnormalities associated with cases of brain injury, stroke, schizophrenia, and attention-deficit disorder. The ANT may also serve as an activation task for neuroimaging studies and as a phenotype for the study of the influence of genes on attentional networks.

3,166 citations

Journal ArticleDOI
19 Nov 2003-JAMA
TL;DR: In this paper, a study of 1631 football players from 15 US colleges found that players with concussions exhibited more severe symptoms (mean GSC score 20.93 [95% confidence interval {CI, 15.65-26.21] points higher than that of controls), cognitive impairments (mean SAC score 2.94 [ 95% CI, 1.41 to 2.06], cognitive functioning improved to baseline levels within 5 to 7 days (day 7 SAC mean difference, −0.33;
Abstract: ContextLack of empirical data on recovery time following sport-related concussion hampers clinical decision making about return to play after injury.ObjectiveTo prospectively measure immediate effects and natural recovery course relating to symptoms, cognitive functioning, and postural stability following sport-related concussion.Design, Setting, and ParticipantsProspective cohort study of 1631 football players from 15 US colleges. All players underwent preseason baseline testing on concussion assessment measures in 1999, 2000, and 2001. Ninety-four players with concussion (based on American Academy of Neurology criteria) and 56 noninjured controls underwent assessment of symptoms, cognitive functioning, and postural stability immediately, 3 hours, and 1, 2, 3, 5, 7, and 90 days after injury.Main Outcome MeasuresScores on the Graded Symptom Checklist (GSC), Standardized Assessment of Concussion (SAC), Balance Error Scoring System (BESS), and a neuropsychological test battery.ResultsNo player with concussion was excluded from participation; 79 players with concussion (84%) completed the protocol through day 90. Players with concussion exhibited more severe symptoms (mean GSC score 20.93 [95% confidence interval {CI}, 15.65-26.21] points higher than that of controls), cognitive impairment (mean SAC score 2.94 [95% CI, 1.50-4.38] points lower than that of controls), and balance problems (mean BESS score 5.81 [95% CI, –0.67 to 12.30] points higher than that of controls) immediately after concussion. On average, symptoms gradually resolved by day 7 (GSC mean difference, 0.33; 95% CI, −1.41 to 2.06), cognitive functioning improved to baseline levels within 5 to 7 days (day 7 SAC mean difference, −0.03; 95% CI, −1.33 to 1.26), and balance deficits dissipated within 3 to 5 days after injury (day 5 BESS mean difference, −0.31; 95% CI, −3.02 to 2.40). Mild impairments in cognitive processing and verbal memory evident on neuropsychological testing 2 days after concussion resolved by day 7. There were no significant differences in symptoms or functional impairments in the concussion and control groups 90 days after concussion.ConclusionsCollegiate football players may require several days for recovery of symptoms, cognitive dysfunction, and postural instability after concussion. Further research is required to determine factors that predict variability in recovery time after concussion. Standardized measurement of postconcussive symptoms, cognitive functioning, and postural stability may enhance clinical management of athletes recovering from concussion.

1,484 citations

Journal ArticleDOI
TL;DR: The recommendations for concussion management provided here are based on the most current research and divided into sections on education and prevention, documentation and legal aspects, evaluation and return to play, and other considerations.
Abstract: Objective: To provide athletic trainers, physicians, and other health care professionals with best-practice guidelines for the management of sport-related concussions. Background: An estimated 3.8 ...

1,026 citations

Journal ArticleDOI
TL;DR: A subroutine package is presented in which the amount of smoothing on a set of n noisy datapoints is determined from the data by means of the Generalized Cross-Validation or predicted Mean-Squared Error criteria of Wahba and her collaborators.

987 citations

Related Papers (5)