scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Recurrent gain of chromosomes 17q and 12 in cultured human embryonic stem cells

TL;DR: It is suggested that increased dosage of chromosome 17q and 12 gene(s) provides a selective advantage for the propagation of undifferentiated hES cells in transplantation therapies in which the use of aneuploid cells could be detrimental.
Abstract: We have observed karyotypic changes involving the gain of chromosome 17q in three independent human embryonic stem (hES) cell lines on five independent occasions. A gain of chromosome 12 was seen occasionally. This implies that increased dosage of chromosome 17q and 12 gene(s) provides a selective advantage for the propagation of undifferentiated hES cells. These observations are instructive for the future application of hES cells in transplantation therapies in which the use of aneuploid cells could be detrimental.
Citations
More filters
Journal ArticleDOI
TL;DR: It is shown that reprograming of juvenile human primary keratinocytes by retroviral transduction with OCT4, SOX2, KLF4 and c-MYC is at least 100-fold more efficient and twofold faster compared with reprogramming of human fibroblasts.
Abstract: The utility of induced pluripotent stem (iPS) cells for investigating the molecular logic of pluripotency and for eventual clinical application is limited by the low efficiency of current methods for reprogramming. Here we show that reprogramming of juvenile human primary keratinocytes by retroviral transduction with OCT4, SOX2, KLF4 and c-MYC is at least 100-fold more efficient and twofold faster compared with reprogramming of human fibroblasts. Keratinocyte-derived iPS (KiPS) cells appear indistinguishable from human embryonic stem cells in colony morphology, growth properties, expression of pluripotency-associated transcription factors and surface markers, global gene expression profiles and differentiation potential in vitro and in vivo. To underscore the efficiency and practicability of this technology, we generated KiPS cells from single adult human hairs. Our findings provide an experimental model for investigating the bases of cellular reprogramming and highlight potential advantages of using keratinocytes to generate patient-specific iPS cells.

1,464 citations

Journal ArticleDOI
TL;DR: Feeder-independent human ES cell culture that includes protein components solely derived from recombinant sources or purified from human material is reported.
Abstract: We have previously reported that high concentrations of basic fibroblast growth factor (bFGF) support feeder-independent growth of human embryonic stem (ES) cells, but those conditions included poorly defined serum and matrix components. Here we report feeder-independent human ES cell culture that includes protein components solely derived from recombinant sources or purified from human material. We describe the derivation of two new human ES cell lines in these defined culture conditions.

1,246 citations

Journal ArticleDOI
TL;DR: This work reviews the history of murine and human ES cell Lines, including practical and ethical aspects of ES cell isolation from pre‐implantation embryos, maintenance of undifferentiated ES cell lines in the cell culture environment, and differentiation of ES cells in vitro and in vivo into mature somatic cell types.
Abstract: Embryonic stem cells have huge potential in the field of tissue engineering and regenerative medicine as they hold the capacity to produce every type of cell and tissue in the body. In theory, the treatment of human disease could be revolutionized by the ability to generate any cell, tissue, or even organ, 'on demand' in the laboratory. This work reviews the history of murine and human ES cell lines, including practical and ethical aspects of ES cell isolation from pre-implantation embryos, maintenance of undifferentiated ES cell lines in the cell culture environment, and differentiation of ES cells in vitro and in vivo into mature somatic cell types. Finally, we discuss advances towards the clinical application of ES cell technology, and some of the obstacles which must be overcome before large scale clinical trials can be considered.

1,148 citations

Journal ArticleDOI
TL;DR: It is demonstrated that hESCs cultured in unconditioned medium (UM) are subjected to high levels of B MP signaling activity, which is reduced in CM, and the BMP antagonist noggin synergizes with basic fibroblast growth factor (bFGF) to repress BMP signaling and sustain undifferentiated proliferation of hESC in the absence of fibroblasts or CM.
Abstract: Human embryonic stem cells (hESCs) are routinely cultured on fibroblast feeder layers or in fibroblast-conditioned medium (CM). Bone morphogenetic proteins (BMPs) have previously been shown to induce hESC differentiation, in apparent contrast to mouse embryonic stem (ES) cells, in which BMP4 synergizes with leukemia inhibitory factor (LIF) to maintain self-renewal. Here we demonstrate that hESCs cultured in unconditioned medium (UM) are subjected to high levels of BMP signaling activity, which is reduced in CM. The BMP antagonist noggin synergizes with basic fibroblast growth factor (bFGF) to repress BMP signaling and sustain undifferentiated proliferation of hESCs in the absence of fibroblasts or CM. These findings suggest a basic difference in the self-renewal mechanism between mouse and human ES cells and simplify the culture of hESCs.

1,097 citations

Journal ArticleDOI
TL;DR: The procedures used to develop 17 lines of human embryonic stem cells from the inner cell masses of blastocysts are discussed.
Abstract: This report, first published online on March 3, 2004, discusses the procedures used to develop 17 lines of human embryonic stem cells from the inner cell masses of blastocysts. These cell lines are available to researchers under a Material Transfer Agreement; according to current regulations, the cells cannot be used for research supported by federal funds. These cells are expected to facilitate research on a variety of serious chronic diseases.

1,041 citations

References
More filters
Journal ArticleDOI
06 Nov 1998-Science
TL;DR: Human blastocyst-derived, pluripotent cell lines are described that have normal karyotypes, express high levels of telomerase activity, and express cell surface markers that characterize primate embryonic stem cells but do not characterize other early lineages.
Abstract: Human blastocyst-derived, pluripotent cell lines are described that have normal karyotypes, express high levels of telomerase activity, and express cell surface markers that characterize primate embryonic stem cells but do not characterize other early lineages. After undifferentiated proliferation in vitro for 4 to 5 months, these cells still maintained the developmental potential to form trophoblast and derivatives of all three embryonic germ layers, including gut epithelium (endoderm); cartilage, bone, smooth muscle, and striated muscle (mesoderm); and neural epithelium, embryonic ganglia, and stratified squamous epithelium (ectoderm). These cell lines should be useful in human developmental biology, drug discovery, and transplantation medicine.

15,555 citations

Journal ArticleDOI
30 May 2003-Cell
TL;DR: These findings establish a central role for Nanog in the transcription factor hierarchy that defines ES cell identity and confirm that Cytokine dependence, multilineage differentiation, and embryo colonization capacity are fully restored upon transgene excision.

3,374 citations

Journal ArticleDOI
TL;DR: The derivation of pluripotent embryonic stem (ES) cells from human blastocysts is described, providing a model to study early human embryology, an investigational tool for discovery of novel growth factors and medicines, and a potential source of cells for use in transplantation therapy.
Abstract: We describe the derivation of pluripotent embryonic stem (ES) cells from human blastocysts. Two diploid ES cell lines have been cultivated in vitro for extended periods while maintaining expression of markers characteristic of pluripotent primate cells. Human ES cells express the transcription factor Oct-4, essential for development of pluripotential cells in the mouse. When grafted into SCID mice, both lines give rise to teratomas containing derivatives of all three embryonic germ layers. Both cell lines differentiate in vitro into extraembryonic and somatic cell lineages. Neural progenitor cells may be isolated from differentiating ES cell cultures and induced to form mature neurons. Embryonic stem cells provide a model to study early human embryology, an investigational tool for discovery of novel growth factors and medicines, and a potential source of cells for use in transplantation therapy.

2,945 citations

Journal ArticleDOI
TL;DR: The clonal derivation of two human ES cell lines, H9.1 and H.2, demonstrates the pluripotency of single human ES cells, the maintenance of pluripOTency during an extended period of culture, and the long-term self-renewing properties of cultured human ES Cells.

1,680 citations

Journal ArticleDOI
TL;DR: It is described how the cytokine leukaemia inhibitory factor (LIF) sustains self-renewal through activation of the transcription factor STAT3, and how two other signals - extracellular-signal-related kinase (ERK) and phosphatidylinositol-3-OH Kinase (PI3K) - can influence differentiation and propagation, respectively.

705 citations