scispace - formally typeset
Search or ask a question
Journal Article•DOI•

Recurrent neural network-based modeling of gene regulatory network using elephant swarm water search algorithm

13 Jun 2017-Journal of Bioinformatics and Computational Biology (World Scientific Publishing Company)-Vol. 15, Iss: 4, pp 1750016-1750016
TL;DR: A new metaheuristic namely Elephant Swarm Water Search Algorithm (ESWSA) to infer Gene Regulatory Network (GRN) is proposed, mainly based on the water search strategy of intelligent and social elephants during drought, utilizing the different types of communication techniques.
Abstract: Correct inference of genetic regulations inside a cell from the biological database like time series microarray data is one of the greatest challenges in post genomic era for biologists and researchers. Recurrent Neural Network (RNN) is one of the most popular and simple approach to model the dynamics as well as to infer correct dependencies among genes. Inspired by the behavior of social elephants, we propose a new metaheuristic namely Elephant Swarm Water Search Algorithm (ESWSA) to infer Gene Regulatory Network (GRN). This algorithm is mainly based on the water search strategy of intelligent and social elephants during drought, utilizing the different types of communication techniques. Initially, the algorithm is tested against benchmark small and medium scale artificial genetic networks without and with presence of different noise levels and the efficiency was observed in term of parametric error, minimum fitness value, execution time, accuracy of prediction of true regulation, etc. Next, the proposed algorithm is tested against the real time gene expression data of Escherichia Coli SOS Network and results were also compared with others state of the art optimization methods. The experimental results suggest that ESWSA is very efficient for GRN inference problem and performs better than other methods in many ways.
Citations
More filters
Journal Article•DOI•
TL;DR: RMPSO is applied to a practical scenario: the reconstruction of Gene Regulatory Networks (GRN) based on Recurrent Neural Network (RNN) model and the experimental results ensure that the RMPSO performs better than the state-of-the-art methods in the synthetic gene data set (gold standard) as well as real gene data data set.

40 citations

Journal Article•DOI•
TL;DR: Results show the efficiency of MESWSA algorithm for I-V characteristics of solar modules at different operating conditions can serve as a new alternative metaheuristic for parameter estimation of solar cells/PV modules.
Abstract: A highly accurate modeling of photovoltaic (PV) systems from experimental data is a very important task for electronic engineers for efficient design of PV systems. Suitable optimization techniques...

12 citations

Journal Article•DOI•
01 Aug 2019
TL;DR: In this work, three different improved versions of original elephant swarm water search algorithm (ESWSA) is proposed and tested against the present problem of liquid flow control and ESWSA is found to be best efficient algorithm with respect to success rate and computational time.
Abstract: In process industry, liquid flow rate is one of the important variables which need to be controlled to obtain the better quality and reduce the cost of production. The liquid flow rate depends upon number of parameters like sensor output voltage, pipe diameter etc. Conventional approach involves manual tuning of these variables so that optimal flow rate can be achieved which is time consuming and costly. However, estimation of an accurate computational model for liquid flow control process can serve as alternative approach. It is nothing but a non-linear optimization problem. In this work, three different improved versions of original elephant swarm water search algorithm (ESWSA) is proposed and tested against the present problem of liquid flow control. Equations for response surface methodology and analysis of variance are being used as non-linear models and these models are optimized using those newly proposed optimization techniques. The statistical analysis of the obtained results shows that the proposed MESWSA has highest overall efficiency (i.e. 45%) and it outperformed the others techniques for the most of the cases of modeling for liquid flow control process. But one of the major disadvantages of MESWSA is its slow convergence speed. On the other hand, ESWSA is better for finding the best fitness and LESWSA has better stability in output. Moreover, LMESWSA is found to be best efficient algorithm with respect to success rate and computational time. However, all algorithms and models can predict the liquid flow rate with satisfactory accuracy.

7 citations

Journal Article•DOI•
TL;DR: This work has proposed a novel methodology for reverse engineering of gene regulatory networks based on a new technique: half-system, which uses half the number of parameters compared to S-systems and thus significantly reduce the computational complexity.
Abstract: The accurate reconstruction of gene regulatory networks for proper understanding of the intricacies of complex biological mechanisms still provides motivation for researchers. Due to accessibility of various gene expression data, we can now attempt to computationally infer genetic interactions. Among the established network inference techniques, S-system is preferred because of its efficiency in replicating biological systems though it is computationally more expensive. This provides motivation for us to develop a similar system with lesser computational load. In this work, we have proposed a novel methodology for reverse engineering of gene regulatory networks based on a new technique: half-system . Half-systems use half the number of parameters compared to S-systems and thus significantly reduce the computational complexity. We have implemented our proposed technique for reconstructing four benchmark networks from their corresponding temporal expression profiles: an 8-gene, a 10-gene, and two 20-gene networks. Being a new technique, to the best of our knowledge, there are no comparable results for this in the contemporary literature. Therefore, we have compared our results with those obtained from the contemporary literature using other methodologies, including the state-of-the-art method, GENIE3 . The results obtained in this work stack favourably against the competition, even showing quantifiable improvements in some cases.

6 citations


Cites methods from "Recurrent neural network-based mode..."

  • ...Recently, a new metaheuristic, namely, elephant swarm water search (ESWS) algorithm was proposed byMandal [58] for training the RNNmodel parameters [59]....

    [...]

Journal Article•DOI•
TL;DR: In this article, the authors identify the proper combination of input parameters in TIG welding of martensitic stainless steel AISI 420 and identify a critical operating region in terms of maximum UTS and Ductility.
Abstract: Martensitic stainless steels are hard, brittle and notch sensitive; crack formation during welding is frequent. Selection of the levels of welding parameters i.e. the input variables seems to be important and useful in the context of achieving optimum/maximum strength of the welded joint. In the present work, focus is given on identification of the proper combination of input parameters in TIG welding of martensitic stainless steel AISI 420. Welding current, gas flow rate and welding speed have been taken as input parameters. Ultimate tensile strength (UTS) and Ductility or Elongation of the welded joint obtained from tensile test is taken as response parameter. Initially, response surface methodology based face-centered central composite design has been used for mathematical model building and regression analysis. Next, several recently proposed metaheuristics are applied for parametric optimization of TIG welding process to maximize the response parameters. From, the simulated results, a critical operating region for efficient TIG welding is identified in term of maximum UTS and Ductility. Confirmatory tests are also performed to validate our proposed methodology.

5 citations

References
More filters
Book Chapter•DOI•
Xin-She Yang1•
TL;DR: In this article, a new algorithm, namely, flower pollination algorithm, inspired by the pollination process of flowers, was proposed, which is more efficient than both GA and PSO.
Abstract: Flower pollination is an intriguing process in the natural world. Its evolutionary characteristics can be used to design new optimization algorithms. In this paper, we propose a new algorithm, namely, flower pollination algorithm, inspired by the pollination process of flowers. We first use ten test functions to validate the new algorithm, and compare its performance with genetic algorithms and particle swarm optimization. Our simulation results show the flower algorithm is more efficient than both GA and PSO. We also use the flower algorithm to solve a nonlinear design benchmark, which shows the convergence rate is almost exponential.

1,415 citations

Journal Article•DOI•
TL;DR: This paper presents a more extensive comparison study using some standard test functions and newly designed stochastic test functions to apply the CS algorithm to solve engineering design optimisation problems, including the design of springs and welded beam structures.
Abstract: A new metaheuristic optimisation algorithm, called cuckoo search (CS), was developed recently by Yang and Deb (2009). This paper presents a more extensive comparison study using some standard test functions and newly designed stochastic test functions. We then apply the CS algorithm to solve engineering design optimisation problems, including the design of springs and welded beam structures. The optimal solutions obtained by CS are far better than the best solutions obtained by an efficient particle swarm optimiser. We will discuss the unique search features used in CS and the implications for further research.

1,339 citations

Book•
06 Jul 2010
TL;DR: The author highlights key concepts and techniques for the successful application of commonly-used metaheuristc algorithms, including simulated annealing, particle swarm optimization, harmony search, and genetic algorithms.
Abstract: An accessible introduction to metaheuristics and optimization, featuring powerful and modern algorithms for application across engineering and the sciences From engineering and computer science to economics and management science, optimization is a core component for problem solving. Highlighting the latest developments that have evolved in recent years, Engineering Optimization: An Introduction with Metaheuristic Applications outlines popular metaheuristic algorithms and equips readers with the skills needed to apply these techniques to their own optimization problems. With insightful examples from various fields of study, the author highlights key concepts and techniques for the successful application of commonly-used metaheuristc algorithms, including simulated annealing, particle swarm optimization, harmony search, and genetic algorithms. The author introduces all major metaheuristic algorithms and their applications in optimization through a presentation that is organized into three succinct parts: Foundations of Optimization and Algorithms provides a brief introduction to the underlying nature of optimization and the common approaches to optimization problems, random number generation, the Monte Carlo method, and the Markov chain Monte Carlo method Metaheuristic Algorithms presents common metaheuristic algorithms in detail, including genetic algorithms, simulated annealing, ant algorithms, bee algorithms, particle swarm optimization, firefly algorithms, and harmony search Applications outlines a wide range of applications that use metaheuristic algorithms to solve challenging optimization problems with detailed implementation while also introducing various modifications used for multi-objective optimization Throughout the book, the author presents worked-out examples and real-world applications that illustrate the modern relevance of the topic. A detailed appendix features important and popular algorithms using MATLAB and Octave software packages, and a related FTP site houses MATLAB code and programs for easy implementation of the discussed techniques. In addition, references to the current literature enable readers to investigate individual algorithms and methods in greater detail. Engineering Optimization: An Introduction with Metaheuristic Applications is an excellent book for courses on optimization and computer simulation at the upper-undergraduate and graduate levels. It is also a valuable reference for researchers and practitioners working in the fields of mathematics, engineering, computer science, operations research, and management science who use metaheuristic algorithms to solve problems in their everyday work.

1,286 citations

Journal Article•DOI•
TL;DR: The fundamental ideas of cuckoo search are reviewed and the latest developments as well as its applications are reviewed, and insight into its search mechanisms is gained.
Abstract: Cuckoo search (CS) is a relatively new algorithm, developed by Yang and Deb in 2009, and CS is efficient in solving global optimization problems. In this paper, we review the fundamental ideas of cuckoo search and the latest developments as well as its applications. We analyze the algorithm and gain insight into its search mechanisms and find out why it is efficient. We also discuss the essence of algorithms and its link to self-organizing systems, and finally we propose some important topics for further research.

762 citations

Journal Article•DOI•
01 Jun 2011
TL;DR: The empirical studies on fifteen static test problems, a dynamic function and a real world engineering problem show that the proposed particle swarm optimization model is quite effective in adapting the value of w in the dynamic and static environments.
Abstract: Particle swarm optimization (PSO) is a stochastic population-based algorithm motivated by intelligent collective behavior of some animals. The most important advantages of the PSO are that PSO is easy to implement and there are few parameters to adjust. The inertia weight (w) is one of PSO's parameters originally proposed by Shi and Eberhart to bring about a balance between the exploration and exploitation characteristics of PSO. Since the introduction of this parameter, there have been a number of proposals of different strategies for determining the value of inertia weight during a course of run. This paper presents the first comprehensive review of the various inertia weight strategies reported in the related literature. These approaches are classified and discussed in three main groups: constant, time-varying and adaptive inertia weights. A new adaptive inertia weight approach is also proposed which uses the success rate of the swarm as its feedback parameter to ascertain the particles' situation in the search space. The empirical studies on fifteen static test problems, a dynamic function and a real world engineering problem show that the proposed particle swarm optimization model is quite effective in adapting the value of w in the dynamic and static environments.

689 citations