scispace - formally typeset
Search or ask a question
Book ChapterDOI

Recursive Diffusion Layers for (Lightweight) Block Ciphers and Hash Functions

15 Aug 2012-pp 355-371
TL;DR: This paper revisits the design strategy of PHOTON lightweight hash family and the work of FSE 2012, in which perfect diffusion layers are constructed by one bundle-based LFSR, and investigates new strategies to constructperfect diffusion layers using more than one Bundle-Based LFSRs.
Abstract: Diffusion layers with maximum branch numbers are widely used in block ciphers and hash functions. In this paper, we construct recursive diffusion layers using Linear Feedback Shift Registers (LFSRs). Unlike the MDS matrix used in AES, whose elements are limited in a finite field, a diffusion layer in this paper is a square matrix composed of linear transformations over a vector space. Perfect diffusion layers with branch numbers from 5 to 9 are constructed. On the one hand, we revisit the design strategy of PHOTON lightweight hash family and the work of FSE 2012, in which perfect diffusion layers are constructed by one bundle-based LFSR. We get better results and they can be used to replace those of PHOTON to gain smaller hardware implementations. On the other hand, we investigate new strategies to construct perfect diffusion layers using more than one bundle-based LFSRs. Finally, we construct perfect diffusion layers by increasing the number of iterations and using bit-level LFSRs. Since most of our proposals have lightweight examples corresponding to 4-bit and 8-bit Sboxes, we expect that they will be useful in designing (lightweight) block ciphers and (lightweight) hash functions.
Citations
More filters
Book ChapterDOI
17 Aug 2014
TL;DR: In this paper, a general methodology to construct good, sometimes optimal, linear layers allowing for a large variety of trade-offs is proposed, and a new block cipher called PRIDE is presented.
Abstract: The linear layer is a core component in any substitution-permutation network block cipher. Its design significantly influences both the security and the efficiency of the resulting block cipher. Surprisingly, not many general constructions are known that allow to choose trade-offs between security and efficiency. Especially, when compared to Sboxes, it seems that the linear layer is crucially understudied. In this paper, we propose a general methodology to construct good, sometimes optimal, linear layers allowing for a large variety of trade-offs. We give several instances of our construction and on top underline its value by presenting a new block cipher. PRIDE is optimized for 8-bit micro-controllers and significantly outperforms all academic solutions both in terms of code size and cycle count.

125 citations

Book ChapterDOI
08 Mar 2015
TL;DR: In this article, the authors provide new methods to look for lightweight MDS matrices, and in particular involutory ones, by proving many new properties and equivalence classes for various MDS matrix constructions such as circulant, Hadamard, Cauchy, and Hadhamard-Cauchy.
Abstract: In this article, we provide new methods to look for lightweight MDS matrices, and in particular involutory ones. By proving many new properties and equivalence classes for various MDS matrices constructions such as circulant, Hadamard, Cauchy and Hadamard-Cauchy, we exhibit new search algorithms that greatly reduce the search space and make lightweight MDS matrices of rather high dimension possible to find. We also explain why the choice of the irreducible polynomial might have a significant impact on the lightweightness, and in contrary to the classical belief, we show that the Hamming weight has no direct impact. Even though we focused our studies on involutory MDS matrices, we also obtained results for non-involutory MDS matrices. Overall, using Hadamard or Hadamard-Cauchy constructions, we provide the (involutory or non-involutory) MDS matrices with the least possible XOR gates for the classical dimensions \(4 \times 4\), \(8 \times 8\), \(16 \times 16\) and \(32 \times 32\) in \(\mathrm {GF}(2^4)\) and \(\mathrm {GF}(2^8)\). Compared to the best known matrices, some of our new candidates save up to 50 % on the amount of XOR gates required for an hardware implementation. Finally, our work indicates that involutory MDS matrices are really interesting building blocks for designers as they can be implemented with almost the same number of XOR gates as non-involutory MDS matrices, the latter being usually non-lightweight when the inverse matrix is required.

75 citations

Book ChapterDOI
20 Mar 2016
TL;DR: With this method, it is shown that circulant involutory MDS matrices, which have been proved do not exist over the finite field $$\mathbb {F}_{2^m}$$, can be constructed by using non-commutative entries.
Abstract: In the present paper, we investigate the problem of constructing MDS matrices with as few bit XOR operations as possible. The key contribution of the present paper is constructing MDS matrices with entries in the set of $$m\times m$$ non-singular matrices over $$\mathbb {F}_2$$ directly, and the linear transformations we used to construct MDS matrices are not assumed pairwise commutative. With this method, it is shown that circulant involutory MDS matrices, which have been proved do not exist over the finite field $$\mathbb {F}_{2^m}$$, can be constructed by using non-commutative entries. Some constructions of $$4\times 4$$ and $$5\times 5$$ circulant involutory MDS matrices are given when $$m=4,8$$. To the best of our knowledge, it is the first time that circulant involutory MDS matrices have been constructed. Furthermore, some lower bounds on XORs that required to evaluate one row of circulant and Hadamard MDS matrices of order 4 are given when $$m=4,8$$. Some constructions achieving the bound are also given, which have fewer XORs than previous constructions.

57 citations


Cites methods from "Recursive Diffusion Layers for (Lig..."

  • ...Then the work is improved by using linear transformations with fewer XORs in [23], where some extreme lightweight MDS matrices are given....

    [...]

  • ...In previous constructions, the entries used to construct MDS matrices are pairwise commutative, such as MDS matrices over finite fields, or assumed pairwise commutative, such as recursive MDS matrices with elements being linear transformations [20,23]....

    [...]

  • ...We use the method in [20,23] to characterize whether L is MDS....

    [...]

Book ChapterDOI
14 Aug 2016
TL;DR: This paper investigates which field representation, that is which choice of basis, allows for an optimal implementation of finite field multiplications with one fixed element, and constructs new MDS matrices which outperform or are on par with all previous results when focusing on a round-based hardware implementation.
Abstract: In this paper we consider the fundamental question of optimizing finite field multiplications with one fixed element. Surprisingly, this question did not receive much attention previously. We investigate which field representation, that is which choice of basis, allows for an optimal implementation. Here, the efficiency of the multiplication is measured in terms of the number of XOR operations needed to implement the multiplication. While our results are potentially of larger interest, we focus on a particular application in the second part of our paper. Here we construct new MDS matrices which outperform or are on par with all previous results when focusing on a round-based hardware implementation.

55 citations


Cites background or methods from "Recursive Diffusion Layers for (Lig..."

  • ...[30], we consider a generalization to additive MDS codes in order to improve efficiency....

    [...]

  • ...In [24] and [30] the authors focus on even more efficient choices for A by considering additive, i....

    [...]

  • ...3 This is also true for the constructions given in [30], but does not hold for the subfield (or code-interleaving) construction....

    [...]

  • ...This is also the case when considering an unrolled implementation of the serial implementations in [30]....

    [...]

Book ChapterDOI
23 Sep 2014
TL;DR: In this article, the authors proposed a new comparison metric, the figure of adversarial merit FOAM, which combines the inherent security provided by cryptographic structures and components with their implementation properties, and applied this new metric to meaningful use cases by studying Substitution-Permutation Network permutations that are suited for hardware implementations.
Abstract: In this article, we propose a new comparison metric, the figure of adversarial merit FOAM, which combines the inherent security provided by cryptographic structures and components with their implementation properties. To the best of our knowledge, this is the first such metric proposed to ensure a fairer comparison of cryptographic designs. We then apply this new metric to meaningful use cases by studying Substitution-Permutation Network permutations that are suited for hardware implementations, and we provide new results on hardware-friendly cryptographic building blocks. For practical reasons, we considered linear and differential attacks and we restricted ourselves to fully serial and round-based implementations. We explore several design strategies, from the geometry of the internal state to the size of the S-box, the field size of the diffusion layer or even the irreducible polynomial defining the finite field. We finally test all possible strategies to provide designers an exhaustive approach in building hardware-friendly cryptographic primitives according to area or FOAM metrics, also introducing a model for predicting the hardware performance of round-based or serial-based implementations. In particular, we exhibit new diffusion matrices circulant or serial that are surprisingly more efficient than the current best known, such as the ones used in AES , LED and PHOTON .

54 citations

References
More filters
Book
01 Jan 1977
TL;DR: This book presents an introduction to BCH Codes and Finite Fields, and methods for Combining Codes, and discusses self-dual Codes and Invariant Theory, as well as nonlinear Codes, Hadamard Matrices, Designs and the Golay Code.
Abstract: Linear Codes. Nonlinear Codes, Hadamard Matrices, Designs and the Golay Code. An Introduction to BCH Codes and Finite Fields. Finite Fields. Dual Codes and Their Weight Distribution. Codes, Designs and Perfect Codes. Cyclic Codes. Cyclic Codes: Idempotents and Mattson-Solomon Polynomials. BCH Codes. Reed-Solomon and Justesen Codes. MDS Codes. Alternant, Goppa and Other Generalized BCH Codes. Reed-Muller Codes. First-Order Reed-Muller Codes. Second-Order Reed-Muller, Kerdock and Preparata Codes. Quadratic-Residue Codes. Bounds on the Size of a Code. Methods for Combining Codes. Self-dual Codes and Invariant Theory. The Golay Codes. Association Schemes. Appendix A. Tables of the Best Codes Known. Appendix B. Finite Geometries. Bibliography. Index.

10,083 citations

Book
14 Feb 2002
TL;DR: The underlying mathematics and the wide trail strategy as the basic design idea are explained in detail and the basics of differential and linear cryptanalysis are reworked.
Abstract: 1. The Advanced Encryption Standard Process.- 2. Preliminaries.- 3. Specification of Rijndael.- 4. Implementation Aspects.- 5. Design Philosophy.- 6. The Data Encryption Standard.- 7. Correlation Matrices.- 8. Difference Propagation.- 9. The Wide Trail Strategy.- 10. Cryptanalysis.- 11. Related Block Ciphers.- Appendices.- A. Propagation Analysis in Galois Fields.- A.1.1 Difference Propagation.- A.l.2 Correlation.- A. 1.4 Functions that are Linear over GF(2).- A.2.1 Difference Propagation.- A.2.2 Correlation.- A.2.4 Functions that are Linear over GF(2).- A.3.3 Dual Bases.- A.4.2 Relationship Between Trace Patterns and Selection Patterns.- A.4.4 Illustration.- A.5 Rijndael-GF.- B. Trail Clustering.- B.1 Transformations with Maximum Branch Number.- B.2 Bounds for Two Rounds.- B.2.1 Difference Propagation.- B.2.2 Correlation.- B.3 Bounds for Four Rounds.- B.4 Two Case Studies.- B.4.1 Differential Trails.- B.4.2 Linear Trails.- C. Substitution Tables.- C.1 SRD.- C.2 Other Tables.- C.2.1 xtime.- C.2.2 Round Constants.- D. Test Vectors.- D.1 KeyExpansion.- D.2 Rijndael(128,128).- D.3 Other Block Lengths and Key Lengths.- E. Reference Code.

3,444 citations

BookDOI
01 Jan 1999

2,795 citations

Book ChapterDOI
02 Jan 1994
TL;DR: A new method is introduced for cryptanalysis of DES cipher, which is essentially a known-plaintext attack, that is applicable to an only-ciphertext attack in certain situations.
Abstract: We introduce a new method for cryptanalysis of DES cipher, which is essentially a known-plaintext attack. As a result, it is possible to break 8-round DES cipher with 221 known-plaintexts and 16-round DES cipher with 247 known-plaintexts, respectively. Moreover, this method is applicable to an only-ciphertext attack in certain situations. For example, if plaintexts consist of natural English sentences represented by ASCII codes, 8-round DES cipher is breakable with 229 ciphertexts only.

2,753 citations

Journal ArticleDOI
11 Aug 1990
TL;DR: A new type of cryptanalytic attack is developed which can break the reduced variant of DES with eight rounds in a few minutes on a personal computer and can break any reduced variantof DES (with up to 15 rounds) using less than 256 operations and chosen plaintexts.
Abstract: The Data Encryption Standard (DES) is the best known and most widely used cryptosystem for civilian applications. It was developed at IBM and adopted by the National Bureau of Standards in the mid 1970s, and has successfully withstood all the attacks published so far in the open literature. In this paper we develop a new type of cryptanalytic attack which can break the reduced variant of DES with eight rounds in a few minutes on a personal computer and can break any reduced variant of DES (with up to 15 rounds) using less than 256 operations and chosen plaintexts. The new attack can be applied to a variety of DES-like substitution/permutation cryptosystems, and demonstrates the crucial role of the (unpublished) design rules.

2,494 citations