scispace - formally typeset
Search or ask a question
Book ChapterDOI

Recursive Structure from Motion

TL;DR: A technique that estimates the Structure from Motion (SFM) in a recursive fashion by recursively performing the SFM on the incoming set of images and updating the previously reconstructed structure with the structure estimated from the current set of photographs.
Abstract: In this paper we present a technique that estimates the Structure from Motion (SFM) in a recursive fashion. Traditionally successful SFM algorithms take the set of images and estimate the scene geometry and camera positions either using incremental algorithms or the global algorithms and do the refinement process [2] to reduce the reprojection error. In this work it is assumed that we don’t have complete image set at the start of the reconstruction process, unlike most of the traditional approaches present in the literature. It is assumed that the set of images come in at the regular intervals and we recursively perform the SFM on the incoming set of images and update the previously reconstructed structure with the structure estimated from the current set of images. The proposed system has been tested on two datasets which consist of 12 images and 60 images respectively and reconstructions obtained show the validity of our proposed technique.
References
More filters
BookDOI
29 Nov 1995
TL;DR: The discrete Kalman filter as mentioned in this paper is a set of mathematical equations that provides an efficient computational (recursive) means to estimate the state of a process, in a way that minimizes the mean of the squared error.
Abstract: In 1960, R.E. Kalman published his famous paper describing a recursive solution to the discrete-data linear filtering problem. Since that time, due in large part to advances in digital computing, the Kalman filter has been the subject of extensive research and application, particularly in the area of autonomous or assisted navigation. The Kalman filter is a set of mathematical equations that provides an efficient computational (recursive) means to estimate the state of a process, in a way that minimizes the mean of the squared error. The filter is very powerful in several aspects: it supports estimations of past, present, and even future states, and it can do so even when the precise nature of the modeled system is unknown. The purpose of this paper is to provide a practical introduction to the discrete Kalman filter. This introduction includes a description and some discussion of the basic discrete Kalman filter, a derivation, description and some discussion of the extended Kalman filter, and a relatively simple (tangible) example with real numbers & results.

2,811 citations

Journal ArticleDOI
TL;DR: In this paper, the singular value decomposition (SVDC) technique is used to factor the measurement matrix into two matrices which represent object shape and camera rotation respectively, and two of the three translation components are computed in a preprocessing stage.
Abstract: Inferring scene geometry and camera motion from a stream of images is possible in principle, but is an ill-conditioned problem when the objects are distant with respect to their size. We have developed a factorization method that can overcome this difficulty by recovering shape and motion under orthography without computing depth as an intermediate step. An image stream can be represented by the 2FxP measurement matrix of the image coordinates of P points tracked through F frames. We show that under orthographic projection this matrix is of rank 3. Based on this observation, the factorization method uses the singular-value decomposition technique to factor the measurement matrix into two matrices which represent object shape and camera rotation respectively. Two of the three translation components are computed in a preprocessing stage. The method can also handle and obtain a full solution from a partially filled-in measurement matrix that may result from occlusions or tracking failures. The method gives accurate results, and does not introduce smoothing in either shape or motion. We demonstrate this with a series of experiments on laboratory and outdoor image streams, with and without occlusions.

2,696 citations

Proceedings ArticleDOI
01 Sep 2009
TL;DR: A system that can match and reconstruct 3D scenes from extremely large collections of photographs such as those found by searching for a given city on Internet photo sharing sites and is designed to scale gracefully with both the size of the problem and the amount of available computation.
Abstract: We present a system that can match and reconstruct 3D scenes from extremely large collections of photographs such as those found by searching for a given city (e.g., Rome) on Internet photo sharing sites. Our system uses a collection of novel parallel distributed matching and reconstruction algorithms, designed to maximize parallelism at each stage in the pipeline and minimize serialization bottlenecks. It is designed to scale gracefully with both the size of the problem and the amount of available computation. We have experimented with a variety of alternative algorithms at each stage of the pipeline and report on which ones work best in a parallel computing environment. Our experimental results demonstrate that it is now possible to reconstruct cities consisting of 150K images in less than a day on a cluster with 500 compute cores.

1,454 citations

Journal ArticleDOI
TL;DR: A system that can match and reconstruct 3D scenes from extremely large collections of photographs such as those found by searching for a given city on Internet photo sharing sites and is designed to scale gracefully with both the size of the problem and the amount of available computation.
Abstract: We present a system that can reconstruct 3D geometry from large, unorganized collections of photographs such as those found by searching for a given city (e.g., Rome) on Internet photo-sharing sites. Our system is built on a set of new, distributed computer vision algorithms for image matching and 3D reconstruction, designed to maximize parallelism at each stage of the pipeline and to scale gracefully with both the size of the problem and the amount of available computation. Our experimental results demonstrate that it is now possible to reconstruct city-scale image collections with more than a hundred thousand images in less than a day.

1,307 citations

Proceedings ArticleDOI
29 Jun 2013
TL;DR: Through algorithm analysis and extensive experiments, it is shown that incremental SfM requires only O(n) time on many major steps including BA, and offers state of the art performance for large-scale reconstructions.
Abstract: The time complexity of incremental structure from motion (SfM) is often known as O(n^4) with respect to the number of cameras. As bundle adjustment (BA) being significantly improved recently by preconditioned conjugate gradient (PCG), it is worth revisiting how fast incremental SfM is. We introduce a novel BA strategy that provides good balance between speed and accuracy. Through algorithm analysis and extensive experiments, we show that incremental SfM requires only O(n) time on many major steps including BA. Our method maintains high accuracy by regularly re-triangulating the feature matches that initially fail to triangulate. We test our algorithm on large photo collections and long video sequences with various settings, and show that our method offers state of the art performance for large-scale reconstructions. The presented algorithm is available as part of VisualSFM at http://homes.cs.washington.edu/~ccwu/vsfm/.

1,269 citations