scispace - formally typeset
Search or ask a question
DOI

Reduced intrinsic neural timescales in schizophrenia along posterior parietal and occipital areas.

TL;DR: In this article, the authors computed intrinsic neural timescales (INT) based on resting-state functional magnetic resonance imaging (rsfMRI) data of healthy controls and patients with schizophrenia spectrum disorder (SZ) from three independently collected samples.
Abstract: We computed intrinsic neural timescales (INT) based on resting-state functional magnetic resonance imaging (rsfMRI) data of healthy controls (HC) and patients with schizophrenia spectrum disorder (SZ) from three independently collected samples. Five clusters showed decreased INT in SZ compared to HC in all three samples: right occipital fusiform gyrus (rOFG), left superior occipital gyrus (lSOG), right superior occipital gyrus (rSOG), left lateral occipital cortex (lLOC) and right postcentral gyrus (rPG). In other words, it appears that sensory information in visual and posterior parietal areas is stored for reduced lengths of time in SZ compared to HC. Finally, we found that symptom severity appears to modulate INT of these areas in SZ.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper , three neuronal layers of the brain's temporo-spatial alignment to the environment are suggested, including a foreground layer, a background layer and an intermediate layer that mediates the relationship between different contents of consciousness.
Abstract: Consciousness is constituted by a structure that includes contents as foreground and the environment as background. This structural relation between the experiential foreground and background presupposes a relationship between the brain and the environment, often neglected in theories of consciousness. The temporo-spatial theory of consciousness addresses the brain–environment relation by a concept labelled ‘temporo-spatial alignment’. Briefly, temporo-spatial alignment refers to the brain's neuronal activity's interaction with and adaption to interoceptive bodily and exteroceptive environmental stimuli, including their symmetry as key for consciousness. Combining theory and empirical data, this article attempts to demonstrate the yet unclear neuro-phenomenal mechanisms of temporo-spatial alignment. First, we suggest three neuronal layers of the brain's temporo-spatial alignment to the environment. These neuronal layers span across a continuum from longer to shorter timescales. (i) The background layer comprises longer and more powerful timescales mediating topographic-dynamic similarities between different subjects' brains. (ii) The intermediate layer includes a mixture of medium-scaled timescales allowing for stochastic matching between environmental inputs and neuronal activity through the brain's intrinsic neuronal timescales and temporal receptive windows. (iii) The foreground layer comprises shorter and less powerful timescales for neuronal entrainment of stimuli temporal onset through neuronal phase shifting and resetting. Second, we elaborate on how the three neuronal layers of temporo-spatial alignment correspond to their respective phenomenal layers of consciousness. (i) The inter-subjectively shared contextual background of consciousness. (ii) An intermediate layer that mediates the relationship between different contents of consciousness. (iii) A foreground layer that includes specific fast-changing contents of consciousness. Overall, temporo-spatial alignment may provide a mechanism whose different neuronal layers modulate corresponding phenomenal layers of consciousness. Temporo-spatial alignment can provide a bridging principle for linking physical-energetic (free energy), dynamic (symmetry), neuronal (three layers of distinct time–space scales) and phenomenal (form featured by background–intermediate–foreground) mechanisms of consciousness.

3 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated the relationship between phase synchronization and intrinsic neural timescales (i.e., intertrial phase coherence and autocorrelation window) in schizophrenia.
Abstract: Input processing in the brain is mediated by phase synchronization and intrinsic neural timescales, both of which have been implicated in schizophrenia. Their relationship remains unclear, though. Recruiting a schizophrenia EEG sample from the B-SNIP consortium dataset (n = 134, 70 schizophrenia patients, 64 controls), we investigate phase synchronization, as measured by intertrial phase coherence (ITPC), and intrinsic neural timescales, as measured by the autocorrelation window (ACW) during both the rest and oddball-task states. The main goal of our paper was to investigate whether reported shifts from shorter to longer timescales are related to decreased ITPC. Our findings show (i) decreases in both theta and alpha ITPC in response to both standard and deviant tones; and (iii) a negative correlation of ITPC and ACW in healthy subjects while such correlation is no longer present in SCZ participants. Together, we demonstrate evidence of abnormally long intrinsic neural timescales (ACW) in resting-state EEG of schizophrenia as well as their dissociation from phase synchronization (ITPC). Our data suggest that, during input processing, the resting state’s abnormally long intrinsic neural timescales tilt the balance of temporal segregation and integration towards the latter. That results in temporal imprecision with decreased phase synchronization in response to inputs. Our findings provide further evidence for a basic temporal disturbance in schizophrenia on the different timescales (longer ACW and shorter ITPC), which, in the future, might be able to explain common symptoms related to the temporal experience in schizophrenia, for example temporal fragmentation.

2 citations

Journal ArticleDOI
29 Jun 2022-bioRxiv
TL;DR: In this article , the authors replicated previously reported group differences by comparing Intrinsic Neural Timescales (INT) of typically developed individuals (TD) and persons diagnosed with autism spectrum disorder (ASD) and schizophrenia (SZ), and found that these same two areas show significantly reduced INT in SZ compared to ASD.
Abstract: Abstract Intrinsic neural timescales (INT) reflect the duration for which brain areas store information. A posterior–anterior hierarchy of increasingly longer INT has been revealed in both typically developed individuals (TD), as well as persons diagnosed with autism spectrum disorder (ASD) and schizophrenia (SZ), though INT are, overall, shorter in both patient groups. In the present study, we aimed to replicate previously reported group differences by comparing INT of TD to ASD and SZ. We partially replicated the previously reported result, showing reduced INT in the left lateral occipital gyrus and the right post-central gyrus in SZ compared to TD. We also directly compared the INT of the two patient groups and found that these same two areas show significantly reduced INT in SZ compared to ASD. Previously reported correlations between INT and symptom severity were not replicated in the current project. Our findings serve to circumscribe the brain areas that can potentially play a determinant role in observed sensory peculiarities in ASD and SZ.

1 citations

Journal ArticleDOI
TL;DR: In this article , the brain inner spatio-temporal organisation of its neural activity provides the spatiotemporal organization of the psychopathological symptoms, which is strongly supported by various examples including major depressive disorder, bipolar disorder, schizophrenia, and autism.
Abstract: How can we characterize psychopathological symptoms and connect them to the brain? Current psychopathological symptoms only focus on either the symptoms themselves or predominantly on the brain. This leaves open their intimate connection. A novel approach, Spatiotemporal Psychopathology, proposes that the brain inner spatiotemporal organisation of its neural activity provides the spatiotemporal organization of the psychopathological symptoms. Specifically, the brains' neuronal topography and dynamic is manifest in a more or less analogous spatiotemporal organisation on the mental level, i.e., mental topography and dynamic. This is strongly supported by various examples including major depressive disorder, bipolar disorder, schizophrenia, and autism. We therefore conclude that Spatiotemporal Psychopathology provides a promising approach to intimately connect brain and symptoms.

1 citations

Journal ArticleDOI
TL;DR: In this article , the authors compared vergence eye movements (VEM) performance in SZ and BD with the use of infrared eye tracker and dedicated vergence stimuli generator and found significant gender differences between groups in terms of binocular VEM parameters.

1 citations

References
More filters
Journal ArticleDOI
TL;DR: Review of five studies involving the PANSS provided evidence of its criterion-related validity with antecedent, genealogical, and concurrent measures, its predictive validity, its drug sensitivity, and its utility for both typological and dimensional assessment.
Abstract: The variable results of positive-negative research with schizophrenics underscore the importance of well-characterized, standardized measurement techniques. We report on the development and initial standardization of the Positive and Negative Syndrome Scale (PANSS) for typological and dimensional assessment. Based on two established psychiatric rating systems, the 30-item PANSS was conceived as an operationalized, drug-sensitive instrument that provides balanced representation of positive and negative symptoms and gauges their relationship to one another and to global psychopathology. It thus constitutes four scales measuring positive and negative syndromes, their differential, and general severity of illness. Study of 101 schizophrenics found the four scales to be normally distributed and supported their reliability and stability. Positive and negative scores were inversely correlated once their common association with general psychopathology was extracted, suggesting that they represent mutually exclusive constructs. Review of five studies involving the PANSS provided evidence of its criterion-related validity with antecedent, genealogical, and concurrent measures, its predictive validity, its drug sensitivity, and its utility for both typological and dimensional assessment.

18,358 citations

Journal ArticleDOI
TL;DR: The results suggest the need for greater care in dealing with subject motion, and the need to critically revisit previous rs-fcMRI work that may not have adequately controlled for effects of transient subject movements.

6,411 citations

Journal ArticleDOI
TL;DR: Head motion was associated with decreased functional coupling in the default and frontoparietal control networks--two networks characterized by coupling among distributed regions of association cortex and other network measures increased with motion including estimates of local functional coupling and coupling between left and right motor regions.

2,228 citations

DatasetDOI
10 Nov 2014

1,674 citations