scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Reducing the Cognitive Footprint of Brain Tumor Surgery.

TL;DR: In this paper, the authors review four concepts with detailed examples which will help us better understand post-operative cognitive outcomes and provide a guide for how to utilize connectomics to reduce cognitive morbidity following cerebral surgery.
Abstract: The surgical management of brain tumors is based on the principle that the extent of resection improves patient outcomes. Traditionally, neurosurgeons have considered that lesions in "non-eloquent" cerebrum can be more aggressively surgically managed compared to lesions in "eloquent" regions with more known functional relevance. Furthermore, advancements in multimodal imaging technologies have improved our ability to extend the rate of resection while minimizing the risk of inducing new neurologic deficits, together referred to as the "onco-functional balance." However, despite the common utilization of invasive techniques such as cortical mapping to identify eloquent tissue responsible for language and motor functions, glioma patients continue to present post-operatively with poor cognitive morbidity in higher-order functions. Such observations are likely related to the difficulty in interpreting the highly-dimensional information these technologies present to us regarding cognition in addition to our classically poor understanding of the functional and structural neuroanatomy underlying complex higher-order cognitive functions. Furthermore, reduction of the brain into isolated cortical regions without consideration of the complex, interacting brain networks which these regions function within to subserve higher-order cognition inherently prevents our successful navigation of true eloquent and non-eloquent cerebrum. Fortunately, recent large-scale movements in the neuroscience community, such as the Human Connectome Project (HCP), have provided updated neural data detailing the many intricate macroscopic connections between cortical regions which integrate and process the information underlying complex human behavior within a brain "connectome." Connectomic data can provide us better maps on how to understand convoluted cortical and subcortical relationships between tumor and human cerebrum such that neurosurgeons can begin to make more informed decisions during surgery to maximize the onco-functional balance. However, connectome-based neurosurgery and related applications for neurorehabilitation are relatively nascent and require further work moving forward to optimize our ability to add highly valuable connectomic data to our surgical armamentarium. In this manuscript, we review four concepts with detailed examples which will help us better understand post-operative cognitive outcomes and provide a guide for how to utilize connectomics to reduce cognitive morbidity following cerebral surgery.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: A large body of evidence is available demonstrating the clinical importance of non-traditional, large-scale brain networks and suggests the need to preserve these networks is relevant for neurosurgical patients.
Abstract: The importance of large-scale brain networks in higher-order human functioning is well established in neuroscience, but has yet to deeply penetrate neurosurgical thinking due to concerns of clinical relevance. Here, we conducted the first systematic review examining the clinical importance of non-traditional, large-scale brain networks, including the default mode (DMN), central executive (CEN), salience (SN), dorsal attention (DAN), and ventral attention (VAN) networks. Studies which reported evidence of neurologic, cognitive, or emotional deficits in relation to damage or dysfunction in these networks were included. We screened 22,697 articles on PubMed, and 551 full-text articles were included and examined. Cognitive deficits were the most common symptom of network disturbances in varying amounts (36–56%), most frequently related to disruption of the DMN (n = 213) or some combination of DMN, CEN, and SN networks (n = 182). An increased proportion of motor symptoms was seen with CEN disruption (12%), and emotional (35%) or language/speech deficits (24%) with SN disruption. Disruption of the attention networks (VAN/DAN) with each other or the other networks mostly led to cognitive deficits (56%). A large body of evidence is available demonstrating the clinical importance of non-traditional, large-scale brain networks and suggests the need to preserve these networks is relevant for neurosurgical patients.

15 citations

Journal ArticleDOI
TL;DR: A systematic review of the effects of extended reality (XR) in neurosurgery with an emphasis on the perioperative period, to provide a guide for future clinical optimization was conducted as discussed by the authors.

13 citations

Journal ArticleDOI
TL;DR: In this paper , the authors used connectomics to construct single-subject cortical networks, and patients underwent network-specific transcranial magnetic stimulation (TMS) sessions daily over five consecutive days.
Abstract: The human brain is a highly plastic 'complex' network-it is highly resilient to damage and capable of self-reorganisation after a large perturbation. Clinically, neurological deficits secondary to iatrogenic injury have very few active treatments. New imaging and stimulation technologies, though, offer promising therapeutic avenues to accelerate post-operative recovery trajectories. In this study, we sought to establish the safety profile for 'interventional neurorehabilitation': connectome-based therapeutic brain stimulation to drive cortical reorganisation and promote functional recovery post-craniotomy. In n = 34 glioma patients who experienced post-operative motor or language deficits, we used connectomics to construct single-subject cortical networks. Based on their clinical and connectivity deficit, patients underwent network-specific transcranial magnetic stimulation (TMS) sessions daily over five consecutive days. Patients were then assessed for TMS-related side effects and improvements. 31/34 (91%) patients were successfully recruited and enrolled for TMS treatment within two weeks of glioma surgery. No seizures or serious complications occurred during TMS rehabilitation and 1-week post-stimulation. Transient headaches were reported in 4/31 patients but improved after a single session. No neurological worsening was observed while a clinically and statistically significant benefit was noted in 28/31 patients post-TMS. We present two clinical vignettes and a video demonstration of interventional neurorehabilitation. For the first time, we demonstrate the safety profile and ability to recruit, enroll, and complete TMS acutely post-craniotomy in a high seizure risk population. Given the lack of randomisation and controls in this study, prospective randomised sham-controlled stimulation trials are now warranted to establish the efficacy of interventional neurorehabilitation following craniotomy.

9 citations

Journal ArticleDOI
TL;DR: The endoscopic-assisted transcortical or interhemispheric approach for butterfly glioma resection is effective in achieving a greater than 95% resection with minimal complications and should be examined further for its clinical benefits in a prospective manner.

8 citations

Journal ArticleDOI
TL;DR: The relationship between PageRank and eigenvector centrality can identify distinct topological characteristics of the brain connectome such as the presence of unimodal or multimodal association cortices.

7 citations

References
More filters
Journal ArticleDOI
TL;DR: A baseline state of the normal adult human brain in terms of the brain oxygen extraction fraction or OEF is identified, suggesting the existence of an organized, baseline default mode of brain function that is suspended during specific goal-directed behaviors.
Abstract: A baseline or control state is fundamental to the understanding of most complex systems. Defining a baseline state in the human brain, arguably our most complex system, poses a particular challenge. Many suspect that left unconstrained, its activity will vary unpredictably. Despite this prediction we identify a baseline state of the normal adult human brain in terms of the brain oxygen extraction fraction or OEF. The OEF is defined as the ratio of oxygen used by the brain to oxygen delivered by flowing blood and is remarkably uniform in the awake but resting state (e.g., lying quietly with eyes closed). Local deviations in the OEF represent the physiological basis of signals of changes in neuronal activity obtained with functional MRI during a wide variety of human behaviors. We used quantitative metabolic and circulatory measurements from positron-emission tomography to obtain the OEF regionally throughout the brain. Areas of activation were conspicuous by their absence. All significant deviations from the mean hemisphere OEF were increases, signifying deactivations, and resided almost exclusively in the visual system. Defining the baseline state of an area in this manner attaches meaning to a group of areas that consistently exhibit decreases from this baseline, during a wide variety of goal-directed behaviors monitored with positron-emission tomography and functional MRI. These decreases suggest the existence of an organized, baseline default mode of brain function that is suspended during specific goal-directed behaviors.

10,708 citations

Journal ArticleDOI
TL;DR: Construction of brain networks from connectivity data is discussed and the most commonly used network measures of structural and functional connectivity are described, which variously detect functional integration and segregation, quantify centrality of individual brain regions or pathways, and test resilience of networks to insult.

9,291 citations

Journal ArticleDOI
TL;DR: This paper explores one aspect of cognition through the use of a simple model task in which human subjects are asked to commit attention to a position in visual space other than fixation by orienting a covert mechanism that seems sufficiently time locked to external events that its trajectory can be traced across the visual field in terms of momentary changes in the efficiency of detecting stimuli.
Abstract: Bartlett viewed thinking as a high level skill exhibiting ballistic properties that he called its “point of no return”. This paper explores one aspect of cognition through the use of a simple model...

9,130 citations

Journal ArticleDOI
TL;DR: It is concluded that correlation of low frequency fluctuations, which may arise from fluctuations in blood oxygenation or flow, is a manifestation of functional connectivity of the brain.
Abstract: An MRI time course of 512 echo-planar images (EPI) in resting human brain obtained every 250 ms reveals fluctuations in signal intensity in each pixel that have a physiologic origin. Regions of the sensorimotor cortex that were activated secondary to hand movement were identified using functional MRI methodology (FMRI). Time courses of low frequency (< 0.1 Hz) fluctuations in resting brain were observed to have a high degree of temporal correlation (P < 10(-3)) within these regions and also with time courses in several other regions that can be associated with motor function. It is concluded that correlation of low frequency fluctuations, which may arise from fluctuations in blood oxygenation or flow, is a manifestation of functional connectivity of the brain.

8,766 citations

Journal ArticleDOI
TL;DR: Past observations are synthesized to provide strong evidence that the default network is a specific, anatomically defined brain system preferentially active when individuals are not focused on the external environment, and for understanding mental disorders including autism, schizophrenia, and Alzheimer's disease.
Abstract: Thirty years of brain imaging research has converged to define the brain’s default network—a novel and only recently appreciated brain system that participates in internal modes of cognition Here we synthesize past observations to provide strong evidence that the default network is a specific, anatomically defined brain system preferentially active when individuals are not focused on the external environment Analysis of connectional anatomy in the monkey supports the presence of an interconnected brain system Providing insight into function, the default network is active when individuals are engaged in internally focused tasks including autobiographical memory retrieval, envisioning the future, and conceiving the perspectives of others Probing the functional anatomy of the network in detail reveals that it is best understood as multiple interacting subsystems The medial temporal lobe subsystem provides information from prior experiences in the form of memories and associations that are the building blocks of mental simulation The medial prefrontal subsystem facilitates the flexible use of this information during the construction of self-relevant mental simulations These two subsystems converge on important nodes of integration including the posterior cingulate cortex The implications of these functional and anatomical observations are discussed in relation to possible adaptive roles of the default network for using past experiences to plan for the future, navigate social interactions, and maximize the utility of moments when we are not otherwise engaged by the external world We conclude by discussing the relevance of the default network for understanding mental disorders including autism, schizophrenia, and Alzheimer’s disease

8,448 citations