scispace - formally typeset
Search or ask a question
Proceedings ArticleDOI

Reflection Symmetry Detection by Embedding Symmetry in a Graph

TL;DR: This work exploits the estimated boundary of the object and describes a boundary pixel using only the estimated normal of the boundary segment around the pixel to embed the symmetry axes in a graph as cliques to robustly detect the symmetry axis.
Abstract: Reflection symmetry is ubiquitous in nature and plays an important role in object detection and recognition tasks. Most of the existing methods for symmetry detection extract and describe each keypoint using a descriptor and a mirrored descriptor. Two keypoints are said to be mirror symmetric key-points if the original descriptor of one keypoint and the mirrored descriptor of the other keypoint are similar. However, these methods suffer from the following issue. The background pixels around the mirror symmetric pixels lying on the boundary of an object can be different. Therefore, their descriptors can be different. However, the boundary of a symmetric object is a major component of global reflection symmetry. We exploit the estimated boundary of the object and describe a boundary pixel using only the estimated normal of the boundary segment around the pixel. We embed the symmetry axes in a graph as cliques to robustly detect the symmetry axes. We show that this approach achieves state-of-the-art results in a standard dataset.
Citations
More filters
Journal ArticleDOI
TL;DR: Wang et al. as mentioned in this paper presented two shape signature-based reflection symmetry detection methods with their theoretical underpinning and empirical evaluation, which can effectively deal with compound shapes which are challenging for traditional contour-based methods.
Abstract: • A solid theoretical foundation of R-signature and LIP-signature about symmetric properties of a given shape is represented. • A verification process is theoretically justified to remove the false candidates based on an efficient symmetry measure. • Two novel datasets (UTLN-SRA & UTLN-MRA) with single & multiple reflections are designed for evaluating symmetry detectors. • A new evaluation protocol based on a lost measure is presented to evaluate reflectional symmetry detectors. • Comprehensive evaluations have verified that our proposed detectors perform well on binary images compared to state of the art. We present two novel shape signature-based reflection symmetry detection methods with their theoretical underpinning and empirical evaluation. LIP-signature and R-signature share similar beneficial properties allowing to detect reflection symmetry directions in a high-performing manner. For the shape signature of a given shape, its merit profile is constructed to detect candidates of symmetry direction. A verification process is utilized to eliminate the false candidates by addressing Radon projections. The proposed methods can effectively deal with compound shapes which are challenging for traditional contour-based methods. To quantify the symmetric efficiency, a new symmetry measure is proposed over the range [0, 1]. Furthermore, we introduce two symmetry shape datasets with a new evaluation protocol and a lost measure for evaluating symmetry detectors. Experimental results using standard and new datasets suggest that the proposed methods prominently perform compared to state of the art.

8 citations

Journal ArticleDOI
TL;DR: In this article, a stable metric is proposed to extract subsets of consistently oriented candidate segments, whenever the underlying 2D signal appearance exhibits definite near symmetric correspondences, and the ranking of such segments on the basis of the surrounding gradient orientation specularity, in order to reflect real symmetric object boundaries.
Abstract: This work addresses the challenging problem of reflection symmetry detection in unconstrained environments. Starting from the understanding on how the visual cortex manages planar symmetry detection, it is proposed to treat the problem in two stages: i) the design of a stable metric that extracts subsets of consistently oriented candidate segments, whenever the underlying 2D signal appearance exhibits definite near symmetric correspondences; ii) the ranking of such segments on the basis of the surrounding gradient orientation specularity, in order to reflect real symmetric object boundaries. Since these operations are related to the way the human brain performs planar symmetry detection, a better correspondence can be established between the outcomes of the proposed algorithm and a human-constructed ground truth. When compared to the testing sets used in recent symmetry detection competitions, a remarkable performance gain can be observed. In additional, further validation has been achieved by conducting perceptual validation experiments with users on a newly built dataset.

6 citations

Proceedings ArticleDOI
01 Oct 2022
TL;DR: This work points out an efficient detector of reflectionally symmetric shapes by addressing a class of projection-based signatures that are structured by a generalized $\mathcal{R}_{fm}$-transform model in accordance with reflectional symmetry detection.
Abstract: Analyzing reflectionally symmetric features inside an image is one of the important processes for recognizing the peculiar appearance of natural and man-made objects, biological patterns, etc. In this work, we will point out an efficient detector of reflectionally symmetric shapes by addressing a class of projection-based signatures that are structured by a generalized $\mathcal{R}_{fm}$-transform model. To this end, we will firstly prove the $\mathcal{R}_{fm^{-}}$transform in accordance with reflectional symmetry detection. Then different corresponding $\mathcal{R}_{fm}$-signatures of binary shapes are evaluated in order to determine which the corresponding exponentiation of the $\mathcal{R}_{fm}$-transform is the best for the detection. Experimental results of detecting on single/compound contour-based shapes have validated that the exponentiation of 10 is the most discriminatory, with over 2.7% better performance on the multiple-axis shapes in comparison with the conventional one. Additionally, the proposed detector also outperforms most of other existing methods. This finding should be recommended for applications in practice.
References
More filters
Book ChapterDOI
07 Oct 2012
TL;DR: This work creates and makes publicly available a ground-truth dataset for symmetry detection in natural images, and uses supervised learning to learn how to combine these cues, and employs MIL to accommodate the unknown scale and orientation of the symmetric structures.
Abstract: In this work we propose a learning-based approach to symmetry detection in natural images. We focus on ribbon-like structures, i.e. contours marking local and approximate reflection symmetry and make three contributions to improve their detection. First, we create and make publicly available a ground-truth dataset for this task by building on the Berkeley Segmentation Dataset. Second, we extract features representing multiple complementary cues, such as grayscale structure, color, texture, and spectral clustering information. Third, we use supervised learning to learn how to combine these cues, and employ MIL to accommodate the unknown scale and orientation of the symmetric structures. We systematically evaluate the performance contribution of each individual component in our pipeline, and demonstrate that overall we consistently improve upon results obtained using existing alternatives.

114 citations


"Reflection Symmetry Detection by Em..." refers background in this paper

  • ...The approaches for reflection symmetry detection in real-world images can be categorized as voting based approaches [12, 13, 14, 21, 4, 6, 5, 15, 16, 17] and multiple model fitting approaches in [18, 19, 20]....

    [...]

Journal ArticleDOI
TL;DR: A new algorithm for detecting structural redundancy in geometric data sets that computes rigid symmetries, i.e., subsets of a surface model that reoccur several times within the model differing only by translation, rotation or mirroring.
Abstract: In this paper, we describe a new algorithm for detecting structural redundancy in geometric data sets. Our algorithm computes rigid symmetries, i.e., subsets of a surface model that reoccur several times within the model differing only by translation, rotation or mirroring. Our algorithm is based on matching locally coherent constellations of feature lines on the object surfaces. In comparison to previous work, the new algorithm is able to detect a large number of symmetric parts without restrictions to regular patterns or nested hierarchies. In addition, working on relevant features only leads to a strong reduction in memory and processing costs such that very large data sets can be handled. We apply the algorithm to a number of real world 3D scanner data sets, demonstrating high recognition rates for general patterns of symmetry.

109 citations


"Reflection Symmetry Detection by Em..." refers background in this paper

  • ...performed matching of locally coherent constellations of feature lines to detect the rigid symmetries [22]....

    [...]

Proceedings ArticleDOI
23 Jun 2013
TL;DR: A US NSF funded symmetry detection algorithm competition as a workshop affiliated with the Computer Vision and Pattern Recognition (CVPR) Conference, 2013 sets a more complete benchmark for computer vision symmetry detection algorithms.
Abstract: Symmetry is a pervasive phenomenon presenting itself in all forms and scales in natural and manmade environments. Its detection plays an essential role at all levels of human as well as machine perception. The recent resurging interest in computational symmetry for computer vision and computer graphics applications has motivated us to conduct a US NSF funded symmetry detection algorithm competition as a workshop affiliated with the Computer Vision and Pattern Recognition (CVPR) Conference, 2013. This competition sets a more complete benchmark for computer vision symmetry detection algorithms. In this report we explain the evaluation metric and the automatic execution of the evaluation workflow. We also present and analyze the algorithms submitted, and show their results on three test sets of real world images depicting reflection, rotation and translation symmetries respectively. This competition establishes a performance baseline for future work on symmetry detection.

82 citations


"Reflection Symmetry Detection by Em..." refers background in this paper

  • ...The recent challenges organized for symmetry detection in the real world images are [9, 10, 8]....

    [...]

Proceedings ArticleDOI
23 Jun 2013
TL;DR: This work proposes a novel approach for detecting partial reflectional symmetry in images using a principled statistical procedure inspired from the a contrario theory, which minimizes the number of false positives.
Abstract: We propose a novel approach for detecting partial reflectional symmetry in images Our method consists of two principal stages: candidate selection and validation In the first step, candidates for mirror-symmetric patches are identified using an existing heuristic procedure based on Hough voting The candidates are then validated using a principled statistical procedure inspired from the a contrario theory, which minimizes the number of false positives Our algorithm uses integral image properties to enhance the execution time

68 citations


"Reflection Symmetry Detection by Em..." refers background in this paper

  • ...The approaches for reflection symmetry detection in real-world images can be categorized as voting based approaches [12, 13, 14, 21, 4, 6, 5, 15, 16, 17] and multiple model fitting approaches in [18, 19, 20]....

    [...]

Journal ArticleDOI
TL;DR: A novel approach is proposed by establishing the correspondence of locally affine invariant edge-based features, which are superior to the intensity based in the aspects that it is insensitive to illumination variations, and applicable to textureless objects.
Abstract: Reflection symmetry detection receives increasing attentions in recent years. The state-of-the-art algorithms mainly use the matching of intensity-based features (such as the SIFT) within a single image to find symmetry axes. This paper proposes a novel approach by establishing the correspondence of locally affine invariant edge-based features, which are superior to the intensity based in the aspects that it is insensitive to illumination variations, and applicable to textureless objects. The locally affine invariance is achieved by simple linear algebra for efficient and robust computations, making the algorithm suitable for detections under object distortions like perspective projection. Commonly used edge detectors and a voting process are, respectively, used before and after the edge description and matching steps to form a complete reflection detection pipeline. Experiments are performed using synthetic and real-world images with both multiple and single reflection symmetry axis. The test results are compared with existing algorithms to validate the proposed method.

50 citations