scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Regenerative Agriculture: An agronomic perspective:

02 Mar 2021-Outlook on Agriculture (SAGE Publications)-Vol. 50, Iss: 1, pp 13-25
TL;DR: In this article, a clarion call for regenerative agriculture is raised, arguing that agriculture is in crisis and soil health is collapsing, and that biodiversity faces the sixth mass extinction.
Abstract: Agriculture is in crisis. Soil health is collapsing. Biodiversity faces the sixth mass extinction. Crop yields are plateauing. Against this crisis narrative swells a clarion call for Regenerative A...
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the authors explore the interrelations between farms and farming systems in the global food system and highlight trends in major regions of the world and explore possible trajectories for the future and ask: Who are the farmers of the future?
Abstract: Achieving SDG2 (zero hunger) in a situation of rapid global population growth requires a continued focus on food production. Farming not merely needs to sustainably produce nutritious diets, but should also provide livelihoods for farmers, while retaining natural ecosystems and services. Rather than focusing on production principles, this article explores the interrelations between farms and farming systems in the global food system. Evaluating farming systems around the world, we reveal a bewildering diversity. While family farms predominate, these range in size from less than 0.1 ha to more than 10,000 ha, and from hand hoe use to machine-based cultivation, enabling one person to plant more than 500 ha in a day. Yet, farming in different parts of the world is highly interdependent, not least because prices paid for farm produce are largely determined by global markets. Furthermore, the economic viability of farming is a problem, globally. We highlight trends in major regions of the world and explore possible trajectories for the future and ask: Who are the farmers of the future? Changing patterns of land ownership, rental and exchange mean that the concept of ‘what is a farm’ becomes increasingly fluid. Next to declining employment and rural depopulation, we also foresee more environmentally-friendly, less external input dependent, regionalised production systems. This may require the reversal of a global trend towards increasing specialisation to a recoupling of arable and livestock farming, not least for the resilience it provides. It might also require a slow-down or reversal of the widespread trend of scale enlargement in agriculture. Next to this trend of scale enlargement, small farms persist in Asia: consolidation of farms proceeds at a snail’s pace in South-east Asia and 70% of farms in India are ‘ultra-small’ – less than 0.05 ha. Also in Africa, where we find smallholder farms are much smaller than often assumed (< 1 ha), farming households are often food insecure. A raft of pro-poor policies and investments are needed to stimulate small-scale agriculture as part of a broader focus on rural development to address persistent poverty and hunger. Smallholder farms will remain an important source of food and income, and a social safety net in absence of alternative livelihood security. But with limited possibilities for smallholders to ‘step-up’, the agricultural engine of growth appears to be broken. Smallholder agriculture cannot deliver the rate of economic growth currently assumed by many policy initiatives in Africa.

118 citations

Journal ArticleDOI
TL;DR: In this paper , the authors highlight conservation actions which have the largest potential for mitigation of climate change and highlight examples of local biodiversity conservation actions that can be incentivized, guided and prioritized by global objectives and targets.
Abstract: The two most urgent and interlinked environmental challenges humanity faces are climate change and biodiversity loss. We are entering a pivotal decade for both the international biodiversity and climate change agendas with the sharpening of ambitious strategies and targets by the Convention on Biological Diversity and the United Nations Framework Convention on Climate Change. Within their respective Conventions, the biodiversity and climate interlinked challenges have largely been addressed separately. There is evidence that conservation actions that halt, slow or reverse biodiversity loss can simultaneously slow anthropogenic mediated climate change significantly. This review highlights conservation actions which have the largest potential for mitigation of climate change. We note that conservation actions have mainly synergistic benefits and few antagonistic trade‐offs with climate change mitigation. Specifically, we identify direct co‐benefits in 14 out of the 21 action targets of the draft post‐2020 global biodiversity framework of the Convention on Biological Diversity, notwithstanding the many indirect links that can also support both biodiversity conservation and climate change mitigation. These relationships are context and scale‐dependent; therefore, we showcase examples of local biodiversity conservation actions that can be incentivized, guided and prioritized by global objectives and targets. The close interlinkages between biodiversity, climate change mitigation, other nature's contributions to people and good quality of life are seldom as integrated as they should be in management and policy. This review aims to re‐emphasize the vital relationships between biodiversity conservation actions and climate change mitigation in a timely manner, in support to major Conferences of Parties that are about to negotiate strategic frameworks and international goals for the decades to come.

28 citations

Journal ArticleDOI
TL;DR: This work aims to provide a clear picture of the phytochemical properties of the fruit extract of Cannabis sativa which has potential in finding its application in wound care and wound healing.
Abstract: © 2021 The Authors. Plant Pathology published by John Wiley & Sons Ltd on behalf of British Society for Plant Pathology. This is an open access article under the terms of the Creative Commons Attribution License. https://creativecommons.org/licenses/by/4.0/

23 citations

Journal ArticleDOI
TL;DR: In this paper, the influence of the dominant agri-food regime on the innovation system for nature-inclusive agriculture in the Dutch dairy sector has been analyzed and five key blocking mechanisms that hinder adoption of NIA practices were identified: insufficient economic incentives for farmers, limited action perspective of many dairy farmers in the Netherlands, lack of a concrete and shared vision for NIA, lackof NIA-specific and integral knowledge and regime resistance.

22 citations

Journal ArticleDOI
TL;DR: In this paper , the influence of the dominant agri-food regime on the innovation system for nature-inclusive agriculture in the Dutch dairy sector is analyzed and five key blocking mechanisms that hinder adoption of NIA practices are identified: insufficient economic incentives for farmers, limited action perspective of many dairy farmers in the Netherlands, lack of a concrete and shared vision for NIA, (4) NIA-specific and integral knowledge and (5) regime resistance.

20 citations

References
More filters
Journal ArticleDOI
TL;DR: The relationship between soil structure and the ability of soil to stabilize soil organic matter (SOM) is a key element in soil C dynamics that has either been overlooked or treated in a cursory fashion when developing SOM models as discussed by the authors.
Abstract: The relationship between soil structure and the ability of soil to stabilize soil organic matter (SOM) is a key element in soil C dynamics that has either been overlooked or treated in a cursory fashion when developing SOM models. The purpose of this paper is to review current knowledge of SOM dynamics within the framework of a newly proposed soil C saturation concept. Initially, we distinguish SOM that is protected against decomposition by various mechanisms from that which is not protected from decomposition. Methods of quantification and characteristics of three SOM pools defined as protected are discussed. Soil organic matter can be: (1) physically stabilized, or protected from decomposition, through microaggregation, or (2) intimate association with silt and clay particles, and (3) can be biochemically stabilized through the formation of recalcitrant SOM compounds. In addition to behavior of each SOM pool, we discuss implications of changes in land management on processes by which SOM compounds undergo protection and release. The characteristics and responses to changes in land use or land management are described for the light fraction (LF) and particulate organic matter (POM). We defined the LF and POM not occluded within microaggregates (53–250 μm sized aggregates as unprotected. Our conclusions are illustrated in a new conceptual SOM model that differs from most SOM models in that the model state variables are measurable SOM pools. We suggest that physicochemical characteristics inherent to soils define the maximum protective capacity of these pools, which limits increases in SOM (i.e. C sequestration) with increased organic residue inputs.

3,301 citations

MonographDOI
24 May 2022
TL;DR: In this paper , the authors present a comprehensive assessment of our understanding of global warming of 1.5°C, future climate change, potential impacts and associated risks, emission pathways, and system transitions consistent with 1.0°C global warming, and strengthening the global response to climate change in the context of sustainable development and efforts to eradicate poverty.
Abstract: The Intergovernmental Panel on Climate Change (IPCC) is the leading international body for assessing the science related to climate change. It provides regular assessments of the scientific basis of climate change, its impacts and future risks, and options for adaptation and mitigation. This IPCC Special Report is a comprehensive assessment of our understanding of global warming of 1.5°C, future climate change, potential impacts and associated risks, emission pathways, and system transitions consistent with 1.5°C global warming, and strengthening the global response to climate change in the context of sustainable development and efforts to eradicate poverty. It serves policymakers, decision makers, stakeholders and all interested parties with unbiased, up-to-date, policy-relevant information. This title is also available as Open Access on Cambridge Core.

2,820 citations

Journal ArticleDOI
18 Oct 2017-PLOS ONE
TL;DR: This analysis estimates a seasonal decline of 76%, and mid-summer decline of 82% in flying insect biomass over the 27 years of study, and shows that this decline is apparent regardless of habitat type, while changes in weather, land use, and habitat characteristics cannot explain this overall decline.
Abstract: Global declines in insects have sparked wide interest among scientists, politicians, and the general public. Loss of insect diversity and abundance is expected to provoke cascading effects on food webs and to jeopardize ecosystem services. Our understanding of the extent and underlying causes of this decline is based on the abundance of single species or taxonomic groups only, rather than changes in insect biomass which is more relevant for ecological functioning. Here, we used a standardized protocol to measure total insect biomass using Malaise traps, deployed over 27 years in 63 nature protection areas in Germany (96 unique location-year combinations) to infer on the status and trend of local entomofauna. Our analysis estimates a seasonal decline of 76%, and mid-summer decline of 82% in flying insect biomass over the 27 years of study. We show that this decline is apparent regardless of habitat type, while changes in weather, land use, and habitat characteristics cannot explain this overall decline. This yet unrecognized loss of insect biomass must be taken into account in evaluating declines in abundance of species depending on insects as a food source, and ecosystem functioning in the European landscape.

2,065 citations

Journal ArticleDOI
TL;DR: Conservation agriculture is claimed to be a panacea for the problems of poor agricultural productivity and soil degradation in sub-Saharan Africa (SSA). It is actively promoted by international research and development organisations, with such strong advocacy that critical debate is stifled as mentioned in this paper.

1,349 citations

Journal ArticleDOI
TL;DR: In this paper, the authors focus on lessons learned from long-term continuous cropping experiments, focusing on the importance of maintaining and improving soil quality in a continuous crop system, which is critical to sustaining agricultural productivity and environmental quality for future generations.
Abstract: Maintenance and improvement of soil quality in continuous cropping systems is critical to sustaining agricultural productivity and environmental quality for future generations. This review focuses on lessons learned from long-term continuous cropping experiments. Soil organic carbon (SOC) is the most often reported attribute from long-term studies and is chosen as the most important indicator of soil quality and agronomic sustainability because of its impact on other physical, chemical and biological indicators of soil quality. Long-term studies have consistently shown the benefit of manures, adequate fertilization, and crop rotation on maintaining agronomic productivity by increasing C inputs into the soil. However, even with crop rotation and manure additions, continuous cropping results in a decline in SOC, although the rate and magnitude of the decline is affected by cropping and tillage system, climate and soil. In the oldest of these studies, the influence of tillage on SOC and dependent soil quality indicators can only be inferred from rotation treatments which included ley rotations (with their reduced frequency of tillage). The impact of tillage per se on SOC and soil quality has only been tested in the ‘long-term’ for about 30 yrs, since the advent of conservation tillage techniques, and only in developed countries in temperate regions. Long-term conservation tillage studies have shown that, within climatic limits: Conservation tillage can sustain or actually increase SOC when coupled with intensive cropping systems; and the need for sound rotation practices in order to maintain agronomic productivity and economic sustainability is more critical in conservation tillage systems than conventional tillage systems. Long-term tillage studies are in their infancy. Preserving and improving these valuable resources is critical to our development of soil management practices for sustaining soil quality in continuous cropping systems.

1,211 citations

Trending Questions (3)
What happens to crop yields under regenerative agriculture?

Crop yields are plateauing under conventional agriculture, but the paper does not provide information on what happens to crop yields under regenerative agriculture.

What are some of the challenges of implementing regenerative agriculture?

The paper does not provide information about the challenges of implementing regenerative agriculture.

Countries that have implemented regenerative agriculture in their countries and the outcome of it?

The text does not provide information about specific countries that have implemented regenerative agriculture or the outcomes of those implementations.