scispace - formally typeset
Journal ArticleDOI

Regulating the p53 pathway: in vitro hypotheses, in vivo veritas

Reads0
Chats0
TLDR
This Review of in vitro studies, human tumour data and recent mouse models shows that p53 post-translational modifications have modulatory roles, and MDM2 andMDM4 have more profound roles for regulating p53.
Abstract
Mutations in TP53, the gene that encodes the tumour suppressor p53, are found in 50% of human cancers, and increased levels of its negative regulators MDM2 and MDM4 (also known as MDMX) downregulate p53 function in many of the rest. Understanding p53 regulation remains a crucial goal to design broadly applicable anticancer strategies based on this pathway. This Review of in vitro studies, human tumour data and recent mouse models shows that p53 post-translational modifications have modulatory roles, and MDM2 and MDM4 have more profound roles for regulating p53. Importantly, MDM4 emerges as an independent target for drug development, as its inactivation is crucial for full p53 activation.

read more

Citations
More filters
Journal ArticleDOI

Blinded by the Light: The Growing Complexity of p53

TL;DR: Control of p53's transcriptional activity is crucial for determining which p53 response is activated, a decision that must be understood if the next generation of drugs that selectively activate or inhibit p53 are to be exploited efficiently.
Journal ArticleDOI

The first 30 years of p53: growing ever more complex

TL;DR: Thirty years ago p53 was discovered as a cellular partner of simian virus 40 large T-antigen, the oncoprotein of this tumour virus, and new functions of this protein were revealed, including the regulation of metabolic pathways and cytokines that are required for embryo implantation.
Journal ArticleDOI

TP53 Mutations in Human Cancers: Origins, Consequences, and Clinical Use

TL;DR: Current knowledge on TP53 gene variations observed in human cancers and populations, and current clinical applications derived from this knowledge are summarized.
Journal ArticleDOI

Modes of p53 regulation.

TL;DR: It is proposed that antirepression, the release of p53 from repression by factors such as Mdm2 and MdmX, is a key step in the physiological activation of p 53.
Journal ArticleDOI

Transcriptional Activation of miR-34a Contributes to p53-Mediated Apoptosis

TL;DR: It is reported that, in addition to regulating the expression of hundreds of protein-coding genes, p53 also modulates the levels of microRNAs (miRNAs) by binding to a perfect p53 binding site located within the gene that gives rise to miR-34a.
References
More filters
Journal ArticleDOI

Global cancer statistics

TL;DR: A substantial proportion of the worldwide burden of cancer could be prevented through the application of existing cancer control knowledge and by implementing programs for tobacco control, vaccination, and early detection and treatment, as well as public health campaigns promoting physical activity and a healthier dietary intake.
Journal ArticleDOI

Global cancer statistics, 2002.

TL;DR: There are striking variations in the risk of different cancers by geographic area, most of the international variation is due to exposure to known or suspected risk factors related to lifestyle or environment, and provides a clear challenge to prevention.
Journal ArticleDOI

The language of covalent histone modifications.

TL;DR: It is proposed that distinct histone modifications, on one or more tails, act sequentially or in combination to form a ‘histone code’ that is, read by other proteins to bring about distinct downstream events.
Journal ArticleDOI

In vivo activation of the p53 pathway by small-molecule antagonists of MDM2.

TL;DR: In this article, the authors identify potent and selective small-molecule antagonists of MDM2 and confirm their mode of action through the crystal structures of complexes, leading to cell cycle arrest, apoptosis, and growth inhibition of human tumor xenografts.
Journal ArticleDOI

Live or let die: the cell's response to p53

TL;DR: Understanding the complex mechanisms that regulate whether or not a cell dies in response to p53 will ultimately contribute to the development of therapeutic strategies to repair the apoptotic p53 response in cancers.
Related Papers (5)