scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Regulation of erythropoiesis by hypoxia-inducible factors.

01 Jan 2013-Blood Reviews (NIH Public Access)-Vol. 27, Iss: 1, pp 41-53
TL;DR: A perspective on recent insights into HIF-controlled erythropoiesis and iron metabolism is provided, and cell types that have EPO-producing capability are examined, and the therapeutic potential of pharmacologic HIF activation for the treatment of anemia is discussed.
About: This article is published in Blood Reviews.The article was published on 2013-01-01 and is currently open access. It has received 488 citations till now. The article focuses on the topics: Erythropoiesis & Kidney metabolism.
Citations
More filters
Journal ArticleDOI
TL;DR: Results from clinical studies of a number of HIF prolyl hydroxylase inhibitors are increasingly available and provide support for the continued evaluation of the risk-benefit ratio of this novel therapeutic approach to the treatment of anemia in CKD.
Abstract: Background: Anemia, a common complication of chronic kidney disease (CKD), has previously been attributed primarily to decreased production of erythropoietin. Mor

800 citations

Journal ArticleDOI
TL;DR: Advancing molecular insight into the transition of tumor cells from adaptation to apoptosis under hypoxia-induced ER stress may provide answers on how to overcome the limitations of current anti-tumor therapies.
Abstract: Hypoxia is a major hallmark of the tumor microenvironment that is strictly associated with rapid cancer progression and induction of metastasis. Hypoxia inhibits disulfide bond formation and impairs protein folding in the Endoplasmic Reticulum (ER). The stress in the ER induces the activation of Unfolded Protein Response (UPR) pathways via the induction of protein kinase RNA-like endoplasmic reticulum kinase (PERK). As a result, the level of phosphorylated Eukaryotic Initiation Factor 2 alpha (eIF2α) is markedly elevated, resulting in the promotion of a pro-adaptive signaling pathway by the inhibition of global protein synthesis and selective translation of Activating Transcription Factor 4 (ATF4). On the contrary, during conditions of prolonged ER stress, pro-adaptive responses fail and apoptotic cell death ensues. Interestingly, similar to the activity of the mitochondria, the ER may also directly activate the apoptotic pathway through ER stress-mediated leakage of calcium into the cytoplasm that leads to the activation of death effectors. Apoptotic cell death also ensues by ATF4-CHOP- mediated induction of several pro-apoptotic genes and suppression of the synthesis of anti-apoptotic Bcl-2 proteins. Advancing molecular insight into the transition of tumor cells from adaptation to apoptosis under hypoxia-induced ER stress may provide answers on how to overcome the limitations of current anti-tumor therapies. Targeting components of the UPR pathways may provide more effective elimination of tumor cells and as a result, contribute to the development of more promising anti-tumor therapeutic agents.

458 citations

Journal ArticleDOI
TL;DR: The possibility of targeting hypoxia-sensitive pathways in immune cells for the treatment of inflammatory disease is discussed and the consequences for immunity and inflammation in different immunological niches are distinguished.
Abstract: Immunological niches are focal sites of immune activity that can have varying microenvironmental features. Hypoxia is a feature of physiological and pathological immunological niches. The impact of hypoxia on immunity and inflammation can vary depending on the microenvironment and immune processes occurring in a given niche. In physiological immunological niches, such as the bone marrow, lymphoid tissue, placenta and intestinal mucosa, physiological hypoxia controls innate and adaptive immunity by modulating immune cell proliferation, development and effector function, largely via transcriptional changes driven by hypoxia-inducible factor (HIF). By contrast, in pathological immunological niches, such as tumours and chronically inflamed, infected or ischaemic tissues, pathological hypoxia can drive tissue dysfunction and disease development through immune cell dysregulation. Here, we differentiate between the effects of physiological and pathological hypoxia on immune cells and the consequences for immunity and inflammation in different immunological niches. Furthermore, we discuss the possibility of targeting hypoxia-sensitive pathways in immune cells for the treatment of inflammatory disease.

390 citations

Journal ArticleDOI
TL;DR: The Hif-dependent and HIF-independent signaling pathways that regulate thrombus formation under hypoxic conditions are reviewed and could lead to the development of novel prophylactic therapies for thrombosis.

310 citations

Journal ArticleDOI
TL;DR: This review discusses how mROS positively regulate mitogenic cellular signaling through redox biology, which is critical for both physiological and pathological proliferation.

293 citations


Cites background from "Regulation of erythropoiesis by hyp..."

  • ...In addition to the formation of blood vessels, an organism must stimulate the production of erythrocytes under hypoxia to increase O2 delivery; thus, a major role of HIF is to enhance transcription of genes controlling erythrocyte production [67]....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: Hypoxia-inducible factor 1 (HIF-1) is found in mammalian cells cultured under reduced O2 tension and is necessary for transcriptional activation mediated by the erythropoietin gene enhancer in hypoxic cells.
Abstract: Hypoxia-inducible factor 1 (HIF-1) is found in mammalian cells cultured under reduced O2 tension and is necessary for transcriptional activation mediated by the erythropoietin gene enhancer in hypoxic cells. We show that both HIF-1 subunits are basic-helix-loop-helix proteins containing a PAS domain, defined by its presence in the Drosophila Per and Sim proteins and in the mammalian ARNT and AHR proteins. HIF-1 alpha is most closely related to Sim. HIF-1 beta is a series of ARNT gene products, which can thus heterodimerize with either HIF-1 alpha or AHR. HIF-1 alpha and HIF-1 beta (ARNT) RNA and protein levels were induced in cells exposed to 1% O2 and decayed rapidly upon return of the cells to 20% O2, consistent with the role of HIF-1 as a mediator of transcriptional responses to hypoxia.

5,729 citations


"Regulation of erythropoiesis by hyp..." refers methods in this paper

  • ...HIF-1 was first isolated from human Hep3B hepatoma cells using DNA sequences that were derived from the 3′-hypoxia enhancer of the EPO gene.(60,61) Together with HIF-2α (also known as endothelial PAS domain protein 1 (EPAS1) or HIF like factor, (HLF)), HIF-1α facilitates O2 delivery and cellular adaptation to hypoxia by stimulating a wide spectrum of biological processes that include angiogenesis, anaerobic glucose metabolism, mitochondrial biogenesis and others....

    [...]

Journal ArticleDOI
20 Apr 2001-Science
TL;DR: It is shown that the interaction between human pVHL and a specific domain of the HIF-1α subunit is regulated through hydroxylation of a proline residue by an enzyme the authors have termed Hif-α prolyl-hydroxylase (HIF-PH).
Abstract: Hypoxia-inducible factor (HIF) is a transcriptional complex that plays a central role in the regulation of gene expression by oxygen. In oxygenated and iron replete cells, HIF-alpha subunits are rapidly destroyed by a mechanism that involves ubiquitylation by the von Hippel-Lindau tumor suppressor (pVHL) E3 ligase complex. This process is suppressed by hypoxia and iron chelation, allowing transcriptional activation. Here we show that the interaction between human pVHL and a specific domain of the HIF-1alpha subunit is regulated through hydroxylation of a proline residue (HIF-1alpha P564) by an enzyme we have termed HIF-alpha prolyl-hydroxylase (HIF-PH). An absolute requirement for dioxygen as a cosubstrate and iron as cofactor suggests that HIF-PH functions directly as a cellular oxygen sensor.

5,186 citations

Journal ArticleDOI
20 May 1999-Nature
TL;DR: It is indicated that the interaction between HIF-1 and pVHL is iron dependent, and that it is necessary for the oxygen-dependent degradation of HIF α-subunits, which may underlie the angiogenic phenotype of VHL-associated tumours.
Abstract: Hypoxia-inducible factor-1 (HIF-1) has a key role in cellular responses to hypoxia, including the regulation of genes involved in energy metabolism, angiogenesis and apoptosis. The alpha subunits of HIF are rapidly degraded by the proteasome under normal conditions, but are stabilized by hypoxia. Cobaltous ions or iron chelators mimic hypoxia, indicating that the stimuli may interact through effects on a ferroprotein oxygen sensor. Here we demonstrate a critical role for the von Hippel-Lindau (VHL) tumour suppressor gene product pVHL in HIF-1 regulation. In VHL-defective cells, HIF alpha-subunits are constitutively stabilized and HIF-1 is activated. Re-expression of pVHL restored oxygen-dependent instability. pVHL and HIF alpha-subunits co-immunoprecipitate, and pVHL is present in the hypoxic HIF-1 DNA-binding complex. In cells exposed to iron chelation or cobaltous ions, HIF-1 is dissociated from pVHL. These findings indicate that the interaction between HIF-1 and pVHL is iron dependent, and that it is necessary for the oxygen-dependent degradation of HIF alpha-subunits. Thus, constitutive HIF-1 activation may underlie the angiogenic phenotype of VHL-associated tumours. The pVHL/HIF-1 interaction provides a new focus for understanding cellular oxygen sensing.

4,845 citations

Journal ArticleDOI
20 Apr 2001-Science
TL;DR: It is found that human pVHL binds to a short HIF-derived peptide when a conserved proline residue at the core of this peptide is hydroxylated, which may play a key role in mammalian oxygen sensing.
Abstract: HIF (hypoxia-inducible factor) is a transcription factor that plays a pivotal role in cellular adaptation to changes in oxygen availability. In the presence of oxygen, HIF is targeted for destruction by an E3 ubiquitin ligase containing the von Hippel-Lindau tumor suppressor protein (pVHL). We found that human pVHL binds to a short HIF-derived peptide when a conserved proline residue at the core of this peptide is hydroxylated. Because proline hydroxylation requires molecular oxygen and Fe(2+), this protein modification may play a key role in mammalian oxygen sensing.

4,480 citations

Journal ArticleDOI
05 Oct 2001-Cell
TL;DR: Direct modulation of recombinant enzyme activity by graded hypoxia, iron chelation, and cobaltous ions mirrors the characteristics of HIF induction in vivo, fulfilling requirements for these enzymes being oxygen sensors that regulate HIF.

3,188 citations