scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Regulation of intestinal homeostasis and immunity with probiotic lactobacilli.

01 May 2013-Trends in Immunology (Trends Immunol)-Vol. 34, Iss: 5, pp 208-215
TL;DR: The mechanisms of immunomodulating capacities of specific probiotic strains, the responses they can induce in the host, and how microbiota and genetic differences between individuals may co-influence host responses and immune homeostasis are reviewed.
About: This article is published in Trends in Immunology.The article was published on 2013-05-01. It has received 282 citations till now. The article focuses on the topics: Gut flora & Acquired immune system.
Citations
More filters
Journal ArticleDOI
TL;DR: Gut-derived effects in humans is described, a review of current understanding of probiotics and prebiotics as a means to manage the microbiota to improve host health, including mechanisms of actions and potential for clinical use.
Abstract: Probiotics and prebiotics are microbiota-management tools for improving host health. They target gastrointestinal effects via the gut, although direct application to other sites such as the oral cavity, vaginal tract and skin is being explored. Here, we describe gut-derived effects in humans. In the past decade, research on the gut microbiome has rapidly accumulated and has been accompanied by increased interest in probiotics and prebiotics as a means to modulate the gut microbiota. Given the importance of these approaches for public health, it is timely to reiterate factual and supporting information on their clinical application and use. In this Review, we discuss scientific evidence on probiotics and prebiotics, including mechanistic insights into health effects. Strains of Lactobacillus, Bifidobacterium and Saccharomyces have a long history of safe and effective use as probiotics, but Roseburia spp., Akkermansia spp., Propionibacterium spp. and Faecalibacterium spp. show promise for the future. For prebiotics, glucans and fructans are well proven, and evidence is building on the prebiotic effects of other substances (for example, oligomers of mannose, glucose, xylose, pectin, starches, human milk and polyphenols).

813 citations

Journal ArticleDOI
TL;DR: The current knowledge concerning the experimental antibacterial activities, including antibiotic-like and cell-regulating activities, and therapeutic effects demonstrated in well-conducted, placebo-controlled, randomized clinical trials of these probiotic Lactobacillus strains are described.
Abstract: A vast and diverse array of microbial species displaying great phylogenic, genomic, and metabolic diversity have colonized the gastrointestinal tract. Resident microbes play a beneficial role by regulating the intestinal immune system, stimulating the maturation of host tissues, and playing a variety of roles in nutrition and in host resistance to gastric and enteric bacterial pathogens. The mechanisms by which the resident microbial species combat gastrointestinal pathogens are complex and include competitive metabolic interactions and the production of antimicrobial molecules. The human intestinal microbiota is a source from which Lactobacillus probiotic strains have often been isolated. Only six probiotic Lactobacillus strains isolated from human intestinal microbiota, i.e., L. rhamnosus GG, L. casei Shirota YIT9029, L. casei DN-114 001, L. johnsonii NCC 533, L. acidophilus LB, and L. reuteri DSM 17938, have been well characterized with regard to their potential antimicrobial effects against the major gastric and enteric bacterial pathogens and rotavirus. In this review, we describe the current knowledge concerning the experimental antibacterial activities, including antibiotic-like and cell-regulating activities, and therapeutic effects demonstrated in well-conducted, placebo-controlled, randomized clinical trials of these probiotic Lactobacillus strains. What is known about the antimicrobial activities supported by the molecules secreted by such probiotic Lactobacillus strains suggests that they constitute a promising new source for the development of innovative anti-infectious agents that act luminally and intracellularly in the gastrointestinal tract.

278 citations


Cites background from "Regulation of intestinal homeostasi..."

  • ...Probiotic Lactobacillus strains have been shown to antagonize the pathogen-induced production of proinflammatory cytokines (75)....

    [...]

Journal ArticleDOI
Cheng Kong1, Renyuan Gao1, Xuebing Yan1, Linsheng Huang1, Huanlong Qin1 
TL;DR: Probiotics treatment can mitigate diet-induced obesity partly through modulating intestinal microbiota, especially in HCD-induced Obesity.

272 citations

Journal ArticleDOI
TL;DR: The role played by cell wall components in LAB physiology is discussed, with special attention to the mechanisms controlling bacterial autolysis, bacterial sensitivity to bacteriophages and the mechanisms underlying interactions between probiotic bacteria and their hosts.
Abstract: The cell wall of Gram-positive bacteria is a complex assemblage of glycopolymers and proteins. It consists of a thick peptidoglycan sacculus that surrounds the cytoplasmic membrane and that is decorated with teichoic acids, polysaccharides, and proteins. It plays a major role in bacterial physiology since it maintains cell shape and integrity during growth and division; in addition, it acts as the interface between the bacterium and its environment. Lactic acid bacteria (LAB) are traditionally and widely used to ferment food, and they are also the subject of more and more research because of their potential health-related benefits. It is now recognized that understanding the composition, structure, and properties of LAB cell walls is a crucial part of developing technological and health applications using these bacteria. In this review, we examine the different components of the Gram-positive cell wall: peptidoglycan, teichoic acids, polysaccharides, and proteins. We present recent findings regarding the structure and function of these complex compounds, results that have emerged thanks to the tandem development of structural analysis and whole genome sequencing. Although general structures and biosynthesis pathways are conserved among Gram-positive bacteria, studies have revealed that LAB cell walls demonstrate unique properties; these studies have yielded some notable, fundamental, and novel findings. Given the potential of this research to contribute to future applied strategies, in our discussion of the role played by cell wall components in LAB physiology, we pay special attention to the mechanisms controlling bacterial autolysis, bacterial sensitivity to bacteriophages and the mechanisms underlying interactions between probiotic bacteria and their hosts.

269 citations


Cites background from "Regulation of intestinal homeostasi..."

  • ...Certain natural LAB strains, lactobacilli strains in particular, are commercially sold as probiotics with health-promoting properties [6]....

    [...]

Journal ArticleDOI
TL;DR: The findings suggest that L. plantarum ZLP001 fortifies the intestinal barrier by strengthening epithelial defense functions and modulating gut microbiota.
Abstract: Weaning disturbs the intestinal barrier function and increases the risk of infection in piglets. Probiotics exert beneficial health effects, mainly by reinforcing the intestinal epithelium and modulating the gut microbiota. However, the mechanisms of action, and especially, the specific regulatory effects of modulated microbiota by probiotics on the intestinal epithelium have not yet been elucidated. The present study aimed to decipher the protective effects of the probiotic Lactobacillus plantarum strain ZLP001 on the intestinal epithelium and microbiota as well as the effects of modulated microbiota on epithelial function. Paracellular permeability was measured with fluorescein isothiocyanate-dextran (FD-4). Gene and protein expression levels of tight junction (TJ) proteins, proinflammatory cytokines, and host defense peptides were determined by RT-qPCR, ELISA, and western blot analysis. Short-chain fatty acid (SCFA) concentrations were measured by ion chromatography. Fecal microbiota composition was assessed by high-throughput sequencing. The results showed that pretreatment with 108 colony forming units (CFU) mL-1 of L. plantarum ZLP001 significantly counteracted the increase in gut permeability to FD-4 induced by 106 CFU mL-1 enterotoxigenic Escherichia coli (ETEC). In addition, L. plantarum ZLP001 pretreatment alleviated the reduction in TJ proteins (claudin-1, occludin, and ZO-1) and downregulated proinflammatory cytokines IL-6 and IL-8, and TNFα expression and secretion caused by ETEC. L. plantarum ZLP001 also significantly increased the expression of the host defense peptides pBD2 and PG1-5 and pBD2 secretion relative to the control. Furthermore, L. plantarum ZLP001 treatment affected piglet fecal microbiota. The abundance of butyrate-producing bacteria Anaerotruncus and Faecalibacterium was significantly increased in L. plantarum ZLP001-treated piglets, and showed a positive correlation with fecal butyric and acetic acid concentrations. In addition, the cell density of Clostridium sensu stricto 1, which may cause epithelial inflammation, was decreased after L. plantarum ZLP001 administration, while the beneficial Lactobacillus was significantly increased. Our findings suggest that L. plantarum ZLP001 fortifies the intestinal barrier by strengthening epithelial defense functions and modulating gut microbiota.

228 citations


Cites background from "Regulation of intestinal homeostasi..."

  • ...A. colihominis has been shown to specifically colonize the lumen whereas F. prausnitzii is enriched in the mucus (Van den Abbeele et al., 2013)....

    [...]

References
More filters
Journal ArticleDOI
Luke Jostins1, Stephan Ripke2, Rinse K. Weersma3, Richard H. Duerr4, Dermot P.B. McGovern5, Ken Y. Hui6, James Lee7, L. Philip Schumm8, Yashoda Sharma6, Carl A. Anderson1, Jonah Essers9, Mitja Mitrovic3, Kaida Ning6, Isabelle Cleynen10, Emilie Theatre11, Sarah L. Spain12, Soumya Raychaudhuri9, Philippe Goyette13, Zhi Wei14, Clara Abraham6, Jean-Paul Achkar15, Tariq Ahmad16, Leila Amininejad17, Ashwin N. Ananthakrishnan9, Vibeke Andersen18, Jane M. Andrews19, Leonard Baidoo4, Tobias Balschun20, Peter A. Bampton21, Alain Bitton22, Gabrielle Boucher13, Stephan Brand23, Carsten Büning24, Ariella Cohain25, Sven Cichon26, Mauro D'Amato27, Dirk De Jong3, Kathy L Devaney9, Marla Dubinsky5, Cathryn Edwards28, David Ellinghaus20, Lynnette R. Ferguson29, Denis Franchimont17, Karin Fransen3, Richard B. Gearry30, Michel Georges11, Christian Gieger, Jürgen Glas22, Talin Haritunians5, Ailsa Hart31, Christopher J. Hawkey32, Matija Hedl6, Xinli Hu9, Tom H. Karlsen33, Limas Kupčinskas34, Subra Kugathasan35, Anna Latiano36, Debby Laukens37, Ian C. Lawrance38, Charlie W. Lees39, Edouard Louis11, Gillian Mahy40, John C. Mansfield41, Angharad R. Morgan29, Craig Mowat42, William G. Newman43, Orazio Palmieri36, Cyriel Y. Ponsioen44, Uroš Potočnik45, Natalie J. Prescott6, Miguel Regueiro4, Jerome I. Rotter5, Richard K Russell46, Jeremy D. Sanderson47, Miquel Sans, Jack Satsangi39, Stefan Schreiber20, Lisa A. Simms48, Jurgita Sventoraityte34, Stephan R. Targan, Kent D. Taylor5, Mark Tremelling49, Hein W. Verspaget50, Martine De Vos37, Cisca Wijmenga3, David C. Wilson39, Juliane Winkelmann51, Ramnik J. Xavier9, Sebastian Zeissig20, Bin Zhang25, Clarence K. Zhang6, Hongyu Zhao6, Mark S. Silverberg52, Vito Annese, Hakon Hakonarson53, Steven R. Brant54, Graham L. Radford-Smith55, Christopher G. Mathew12, John D. Rioux13, Eric E. Schadt25, Mark J. Daly2, Andre Franke20, Miles Parkes7, Severine Vermeire10, Jeffrey C. Barrett1, Judy H. Cho6 
Wellcome Trust Sanger Institute1, Broad Institute2, University of Groningen3, University of Pittsburgh4, Cedars-Sinai Medical Center5, Yale University6, University of Cambridge7, University of Chicago8, Harvard University9, Katholieke Universiteit Leuven10, University of Liège11, King's College London12, Université de Montréal13, New Jersey Institute of Technology14, Cleveland Clinic15, Peninsula College of Medicine and Dentistry16, Université libre de Bruxelles17, Aarhus University18, University of Adelaide19, University of Kiel20, Flinders University21, McGill University22, Ludwig Maximilian University of Munich23, Charité24, Icahn School of Medicine at Mount Sinai25, University of Bonn26, Karolinska Institutet27, Torbay Hospital28, University of Auckland29, Christchurch Hospital30, Imperial College London31, Queen's University32, University of Oslo33, Lithuanian University of Health Sciences34, Emory University35, Casa Sollievo della Sofferenza36, Ghent University37, University of Western Australia38, University of Edinburgh39, Queensland Health40, Newcastle University41, University of Dundee42, University of Manchester43, University of Amsterdam44, University of Maribor45, Royal Hospital for Sick Children46, Guy's and St Thomas' NHS Foundation Trust47, QIMR Berghofer Medical Research Institute48, Norfolk and Norwich University Hospital49, Leiden University50, Technische Universität München51, University of Toronto52, University of Pennsylvania53, Johns Hopkins University54, University of Queensland55
01 Nov 2012-Nature
TL;DR: A meta-analysis of Crohn’s disease and ulcerative colitis genome-wide association scans is undertaken, followed by extensive validation of significant findings, with a combined total of more than 75,000 cases and controls.
Abstract: Crohn's disease and ulcerative colitis, the two common forms of inflammatory bowel disease (IBD), affect over 2.5 million people of European ancestry, with rising prevalence in other populations. Genome-wide association studies and subsequent meta-analyses of these two diseases as separate phenotypes have implicated previously unsuspected mechanisms, such as autophagy, in their pathogenesis and showed that some IBD loci are shared with other inflammatory diseases. Here we expand on the knowledge of relevant pathways by undertaking a meta-analysis of Crohn's disease and ulcerative colitis genome-wide association scans, followed by extensive validation of significant findings, with a combined total of more than 75,000 cases and controls. We identify 71 new associations, for a total of 163 IBD loci, that meet genome-wide significance thresholds. Most loci contribute to both phenotypes, and both directional (consistently favouring one allele over the course of human history) and balancing (favouring the retention of both alleles within populations) selection effects are evident. Many IBD loci are also implicated in other immune-mediated disorders, most notably with ankylosing spondylitis and psoriasis. We also observe considerable overlap between susceptibility loci for IBD and mycobacterial infection. Gene co-expression network analysis emphasizes this relationship, with pathways shared between host responses to mycobacteria and those predisposing to IBD.

4,094 citations

Journal ArticleDOI
TL;DR: Findings indicating that developmental aspects of the adaptive immune system are influenced by bacterial colonization of the gut are discussed, and the possibility that the mammalian immune system, which seems to be designed to control microorganisms, is in fact controlled by microorganisms is raised.
Abstract: Immunological dysregulation is the cause of many non-infectious human diseases such as autoimmunity, allergy and cancer. The gastrointestinal tract is the primary site of interaction between the host immune system and microorganisms, both symbiotic and pathogenic. In this Review we discuss findings indicating that developmental aspects of the adaptive immune system are influenced by bacterial colonization of the gut. We also highlight the molecular pathways that mediate host–symbiont interactions that regulate proper immune function. Finally, we present recent evidence to support that disturbances in the bacterial microbiota result in dysregulation of adaptive immune cells, and this may underlie disorders such as inflammatory bowel disease. This raises the possibility that the mammalian immune system, which seems to be designed to control microorganisms, is in fact controlled by microorganisms.

4,079 citations

Journal ArticleDOI
30 Oct 2009-Cell
TL;DR: The authors showed that colonisation of mice with a segmented filamentous bacterium (SFB) is sufficient to induce the appearance of CD4+ T helper cells that produce IL-17 and IL-22 (Th17 cells) in the lamina propria.

3,860 citations

Journal ArticleDOI
TL;DR: The results suggest that counterbalancing dysbiosis using F. prausnitzii as a probiotic is a promising strategy in CD treatment and exhibits anti-inflammatory effects on cellular and TNBS colitis models, partly due to secreted metabolites able to block NF-κB activation and IL-8 production.
Abstract: A decrease in the abundance and biodiversity of intestinal bacteria within the dominant phylum Firmicutes has been observed repeatedly in Crohn disease (CD) patients. In this study, we determined the composition of the mucosa-associated microbiota of CD patients at the time of surgical resection and 6 months later using FISH analysis. We found that a reduction of a major member of Firmicutes, Faecalibacterium prausnitzii, is associated with a higher risk of postoperative recurrence of ileal CD. A lower proportion of F. prausnitzii on resected ileal Crohn mucosa also was associated with endoscopic recurrence at 6 months. To evaluate the immunomodulatory properties of F. prausnitzii we analyzed the anti-inflammatory effects of F. prausnitzii in both in vitro (cellular models) and in vivo [2,4,6-trinitrobenzenesulphonic acid (TNBS)-induced] colitis in mice. In Caco-2 cells transfected with a reporter gene for NF-kappaB activity, F. prausnitzii had no effect on IL-1beta-induced NF-kappaB activity, whereas the supernatant abolished it. In vitro peripheral blood mononuclear cell stimulation by F. prausnitzii led to significantly lower IL-12 and IFN-gamma production levels and higher secretion of IL-10. Oral administration of either live F. prausnitzii or its supernatant markedly reduced the severity of TNBS colitis and tended to correct the dysbiosis associated with TNBS colitis, as demonstrated by real-time quantitative PCR (qPCR) analysis. F. prausnitzii exhibits anti-inflammatory effects on cellular and TNBS colitis models, partly due to secreted metabolites able to block NF-kappaB activation and IL-8 production. These results suggest that counterbalancing dysbiosis using F. prausnitzii as a probiotic is a promising strategy in CD treatment.

3,653 citations

Journal ArticleDOI
13 Sep 2012-Nature
TL;DR: Through increased knowledge of the mechanisms involved in the interactions between the microbiota and its host, the world will be in a better position to develop treatments for metabolic disease.
Abstract: The link between the microbes in the human gut and the development of obesity, cardiovascular disease and metabolic syndromes, such as type 2 diabetes, is becoming clearer. However, because of the complexity of the microbial community, the functional connections are less well understood. Studies in both mice and humans are helping to show what effect the gut microbiota has on host metabolism by improving energy yield from food and modulating dietary or the host-derived compounds that alter host metabolic pathways. Through increased knowledge of the mechanisms involved in the interactions between the microbiota and its host, we will be in a better position to develop treatments for metabolic disease.

3,436 citations

Related Papers (5)