scispace - formally typeset
Search or ask a question
Book ChapterDOI

Regulatory Gene Networks in Drought Stress Responses and Resistance in Plants.

TL;DR: This chapter summarizes recent advances in drought stress signaling, focusing on gene networks in cellular and intercellular stress responses and drought resistance.
Abstract: Plant responses to drought stress have been analyzed extensively to reveal complex regulatory gene networks, including the detection of water deficit signals, as well as the physiological, cellular, and molecular responses. Plants recognize water deficit conditions at their roots and transmit this signal to their shoots to synthesize abscisic acid (ABA) in their leaves. ABA is a key phytohormone that regulates physiological and molecular responses to drought stress, such as stomatal closure, gene expression, and the accumulation of osmoprotectants and stress proteins. ABA transporters function as the first step for propagating synthesized ABA. To prevent water loss, ABA influx in guard cells is detected by several protein kinases, such as SnRK2s and MAPKs that regulate stomatal closure. ABA mediates a wide variety of gene expression machineries with stress-responsive transcription factors, including DREBs and AREBs, to acquire drought stress resistance in whole tissues. In this chapter, we summarize recent advances in drought stress signaling, focusing on gene networks in cellular and intercellular stress responses and drought resistance.
Citations
More filters
Journal ArticleDOI
30 Jan 2019
TL;DR: The causes ofClimate change, stresses produced due to climate change, impacts on crops, modern breeding technologies, and biotechnological strategies to cope with climate change are summarized in order to develop climate resilient crops.
Abstract: Agriculture and climate change are internally correlated with each other in various aspects, as climate change is the main cause of biotic and abiotic stresses, which have adverse effects on the agriculture of a region. The land and its agriculture are being affected by climate changes in different ways, e.g., variations in annual rainfall, average temperature, heat waves, modifications in weeds, pests or microbes, global change of atmospheric CO2 or ozone level, and fluctuations in sea level. The threat of varying global climate has greatly driven the attention of scientists, as these variations are imparting negative impact on global crop production and compromising food security worldwide. According to some predicted reports, agriculture is considered the most endangered activity adversely affected by climate changes. To date, food security and ecosystem resilience are the most concerning subjects worldwide. Climate-smart agriculture is the only way to lower the negative impact of climate variations on crop adaptation, before it might affect global crop production drastically. In this review paper, we summarize the causes of climate change, stresses produced due to climate change, impacts on crops, modern breeding technologies, and biotechnological strategies to cope with climate change, in order to develop climate resilient crops. Revolutions in genetic engineering techniques can also aid in overcoming food security issues against extreme environmental conditions, by producing transgenic plants.

742 citations


Cites background from "Regulatory Gene Networks in Drought..."

  • ...The signaling cascade consisted of 3 units, SnRK2/OST1 (Protein kinase), PP2C (protein phosphatases) and PYR/PYL/RCAR proteins [100]....

    [...]

Journal ArticleDOI
TL;DR: Recent advances in research on drought stress responses are summarized, focusing on long-distance signaling from roots to shoots, ABA synthesis and transport, and metabolic regulation in both cellular and whole-plant levels of Arabidopsis and crops.
Abstract: The drought stress responses of vascular plants are complex regulatory mechanisms because they include various physiological responses from signal perception under water deficit conditions to the acquisition of drought stress resistance at the whole-plant level. It is thought that plants first recognize water deficit conditions in roots and that several molecular signals then move from roots to shoots. Finally, a phytohormone, abscisic acid (ABA) is synthesized mainly in leaves. However, the detailed molecular mechanisms of stress sensors and the regulators that initiate ABA biosynthesis in response to drought stress conditions are still unclear. Another important issue is how plants adjust ABA propagation, stress-mediated gene expression and metabolite composition to acquire drought stress resistance in different tissues throughout the whole plant. In this review, we summarize recent advances in research on drought stress responses, focusing on long-distance signaling from roots to shoots, ABA synthesis and transport, and metabolic regulation in both cellular and whole-plant levels of Arabidopsis and crops. We also discuss coordinated mechanisms for acquiring drought stress adaptations and resistance via tissue-to-tissue communication and long-distance signaling.

153 citations

Journal ArticleDOI
TL;DR: A meta-analysis of the transcriptome response of plants to different types of stress combinations reveals that each different stress combination is accompanied by its own set of stress combination-specific transcripts, and that the response of different transcription factor families is unique to each stress combination.
Abstract: Episodes of heat waves combined with drought can have a devastating impact on agricultural production worldwide. These conditions, as well as many other types of stress combinations, impose unique physiological and developmental demands on plants and require the activation of dedicated pathways. Here, we review recent RNA sequencing studies of stress combination in plants, and conduct a meta-analysis of the transcriptome response of plants to different types of stress combination. Our analysis reveals that each different stress combination is accompanied by its own set of stress combination-specific transcripts, and that the response of different transcription factor families is unique to each stress combination. The alarming rate of increase in global temperatures, coupled with the predicted increase in future episodes of extreme weather, highlight an urgent need to develop crop plants with enhanced tolerance to stress combination. The uniqueness and complexity of the physiological and molecular response of plants to each different stress combination, highlighted here, demonstrate the daunting challenge we face in accomplishing this goal. Dedicated efforts combining field experimentation, omics, and network analyses, coupled with advanced phenotyping and breeding methods, will be needed to address specific crops and particular stress combinations relevant to maintaining our future food chain secured.

90 citations

Journal ArticleDOI
TL;DR: A set of drought-regulated genes are revealed, including many genes encoding uncharacterized proteins that are associated with drought tolerance at the seedling stage of sorghum, including transcription factors, signaling and stress-related proteins implicated in drought tolerance in other crops.
Abstract: Drought is a major limiting factor of crop yields. In response to drought, plants reprogram their gene expression, which ultimately regulates a multitude of biochemical and physiological processes. The timing of this reprogramming and the nature of the drought-regulated genes in different genotypes are thought to confer differential tolerance to drought stress. Sorghum is a highly drought-tolerant crop and has been increasingly used as a model cereal to identify genes that confer tolerance. Also, there is considerable natural variation in resistance to drought in different sorghum genotypes. Here, we evaluated drought resistance in four genotypes to polyethylene glycol (PEG)-induced drought stress at the seedling stage and performed transcriptome analysis in seedlings of sorghum genotypes that are either drought-resistant or drought-sensitive to identify drought-regulated changes in gene expression that are unique to drought-resistant genotypes of sorghum. Our analysis revealed that about 180 genes are differentially regulated in response to drought stress only in drought-resistant genotypes and most of these (over 70%) are up-regulated in response to drought. Among these, about 70 genes are novel with no known function and the remaining are transcription factors, signaling and stress-related proteins implicated in drought tolerance in other crops. This study revealed a set of drought-regulated genes, including many genes encoding uncharacterized proteins that are associated with drought tolerance at the seedling stage.

58 citations


Cites background from "Regulatory Gene Networks in Drought..."

  • ...At the molecular level, the response to drought stress includes transcriptional and post-transcriptional regulation of gene expression [1,6,7]....

    [...]

Journal ArticleDOI
TL;DR: Flavonoids may facilitate maize seedling drought tolerance by lowering drought-induced oxidative damage as well regulating stomatal movement, and the capacity determined from doi57 seedling extracts to scavenge oxygen free radicals was more effective than that of B73 under the drought treatment.
Abstract: As drought threatens the yield and quality of maize (Zea mays L.), it is important to dissect the molecular basis of maize drought tolerance. Flavonoids, participate in the scavenging of oxygen free radicals and alleviate stress-induced oxidative damages. This study aims to dissect the function of flavonoids in the improvement of maize drought tolerance. Using far-infrared imaging screening, we previously isolated a drought overly insensitivity (doi) mutant from an ethyl methanesulfonate (EMS)-mutagenized maize library and designated it as doi57. In this study, we performed a physiological characterization and transcriptome profiling of doi57 in comparison to corresponding wild-type B73 under drought stress. Under drought stress, doi57 seedlings displayed lower leaf-surface temperature (LST), faster water loss, and better performance in growth than B73. Transcriptome analysis reveals that key genes involved in flavonoid biosynthesis are enriched among differentially expressed genes in doi57. In line with these results, more flavonols and less hydrogen peroxide (H2O2) were accumulated in guard cells of doi57 than in those of B73 with the decrease of soil water content (SWC). Moreover, the capacity determined from doi57 seedling extracts to scavenge oxygen free radicals was more effective than that of B73 under the drought treatment. Additionally, doi57 seedlings had higher photosynthetic rates, stomatal conductance, transpiration rates, and water use efficiency than B73 exposed to drought stress, resulting in high biomass and greater root/shoot ratios in doi57 mutant plants. Flavonoids may facilitate maize seedling drought tolerance by lowering drought-induced oxidative damage as well regulating stomatal movement.

53 citations

References
More filters
Journal ArticleDOI
TL;DR: The elucidation ofMYB protein function and regulation that is possible in Arabidopsis will provide the foundation for predicting the contributions of MYB proteins to the biology of plants in general.

3,542 citations

Journal ArticleDOI
TL;DR: It is becoming apparent that plants perceive and respond to drought and salt stresses by quickly altering gene expression in parallel with physiological and biochemical alterations; this occurs even under mild to moderate stress conditions.

3,080 citations

Journal ArticleDOI
TL;DR: Overexpression of the DREB1A cDNA in transgenic Arabidopsis plants not only induced strong expression of the target genes under unstressed conditions but also caused dwarfed phenotypes in the transgenic plants, and revealed freezing and dehydration tolerance.
Abstract: Plant growth is greatly affected by drought and low temperature. Expression of a number of genes is induced by both drought and low temperature, although these stresses are quite different. Previous experiments have established that a cis-acting element named DRE (for dehydration-responsive element) plays an important role in both dehydration- and low-temperature-induced gene expression in Arabidopsis. Two cDNA clones that encode DRE binding proteins, DREB1A and DREB2A, were isolated by using the yeast one-hybrid screening technique. The two cDNA libraries were prepared from dehydrated and cold-treated rosette plants, respectively. The deduced amino acid sequences of DREB1A and DREB2A showed no significant sequence similarity, except in the conserved DNA binding domains found in the EREBP and APETALA2 proteins that function in ethylene-responsive expression and floral morphogenesis, respectively. Both the DREB1A and DREB2A proteins specifically bound to the DRE sequence in vitro and activated the transcription of the b-glucuronidase reporter gene driven by the DRE sequence in Arabidopsis leaf protoplasts. Expression of the DREB1A gene and its two homologs was induced by low-temperature stress, whereas expression of the DREB2A gene and its single homolog was induced by dehydration. Overexpression of the DREB1A cDNA in transgenic Arabidopsis plants not only induced strong expression of the target genes under unstressed conditions but also caused dwarfed phenotypes in the transgenic plants. These transgenic plants also revealed freezing and dehydration tolerance. In contrast, overexpression of the DREB2A cDNA induced weak expression of the target genes under unstressed conditions and caused growth retardation of the transgenic plants. These results indicate that two independent families of DREB proteins, DREB1 and DREB2, function as trans-acting factors in two separate signal transduction pathways under low-temperature and dehydration conditions, respectively.

2,886 citations

Journal ArticleDOI
TL;DR: An overview of ROS homeostasis and signalling in response to drought and salt stresses is provided and the current understanding of ROS involvement in stress sensing, stress signalling and regulation of acclimation responses is discussed.
Abstract: Water deficit and salinity, especially under high light intensity or in combination with other stresses, disrupt photosynthesis and increase photorespiration, altering the normal homeostasis of cells and cause an increased production of reactive oxygen species (ROS). ROS play a dual role in the response of plants to abiotic stresses functioning as toxic by-products of stress metabolism, as well as important signal transduction molecules. In this review, we provide an overview of ROS homeostasis and signalling in response to drought and salt stresses and discuss the current understanding of ROS involvement in stress sensing, stress signalling and regulation of acclimation responses.

2,872 citations

Journal ArticleDOI
TL;DR: A new model for ABA action has been proposed and validated, in which the soluble PYR/PYL/RCAR receptors function at the apex of a negative regulatory pathway to directly regulate PP2C phosphatases, which in turn directly regulate SnRK2 kinases.
Abstract: Abscisic acid (ABA) regulates numerous developmental processes and adaptive stress responses in plants. Many ABA signaling components have been identified, but their interconnections and a consensus on the structure of the ABA signaling network have eluded researchers. Recently, several advances have led to the identification of ABA receptors and their three-dimensional structures, and an understanding of how key regulatory phosphatase and kinase activities are controlled by ABA. A new model for ABA action has been proposed and validated, in which the soluble PYR/PYL/RCAR receptors function at the apex of a negative regulatory pathway to directly regulate PP2C phosphatases, which in turn directly regulate SnRK2 kinases. This model unifies many previously defined signaling components and highlights the importance of future work focused on defining the direct targets of SnRK2s and PP2Cs, dissecting the mechanisms of hormone interactions (i.e., cross talk) and defining connections between this new negative regulatory pathway and other factors implicated in ABA signaling.

2,359 citations