scispace - formally typeset
Open AccessJournal ArticleDOI

Reinforcement learning: a survey

Reads0
Chats0
TLDR
Central issues of reinforcement learning are discussed, including trading off exploration and exploitation, establishing the foundations of the field via Markov decision theory, learning from delayed reinforcement, constructing empirical models to accelerate learning, making use of generalization and hierarchy, and coping with hidden state.
Abstract
This paper surveys the field of reinforcement learning from a computer-science perspective. It is written to be accessible to researchers familiar with machine learning. Both the historical basis of the field and a broad selection of current work are summarized. Reinforcement learning is the problem faced by an agent that learns behavior through trial-and-error interactions with a dynamic environment. The work described here has a resemblance to work in psychology, but differs considerably in the details and in the use of the word "reinforcement." The paper discusses central issues of reinforcement learning, including trading off exploration and exploitation, establishing the foundations of the field via Markov decision theory, learning from delayed reinforcement, constructing empirical models to accelerate learning, making use of generalization and hierarchy, and coping with hidden state. It concludes with a survey of some implemented systems and an assessment of the practical utility of current methods for reinforcement learning.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Deep learning in neural networks

TL;DR: This historical survey compactly summarizes relevant work, much of it from the previous millennium, review deep supervised learning, unsupervised learning, reinforcement learning & evolutionary computation, and indirect search for short programs encoding deep and large networks.
Journal ArticleDOI

Ant colony system: a cooperative learning approach to the traveling salesman problem

TL;DR: The results show that the ACS outperforms other nature-inspired algorithms such as simulated annealing and evolutionary computation, and it is concluded comparing ACS-3-opt, a version of the ACS augmented with a local search procedure, to some of the best performing algorithms for symmetric and asymmetric TSPs.
Journal ArticleDOI

An Integrative Theory of Locus Coeruleus-Norepinephrine Function: Adaptive Gain and Optimal Performance.

TL;DR: In this article, the locus coeruleus-norepinephrine (LC-NE) system plays a more complex and specific role in the control of behavior than investigators previously thought.
Journal ArticleDOI

The Neural Basis of Decision Making

TL;DR: This work focuses on simple decisions that can be studied in the laboratory but emphasize general principles likely to extend to other settings, including deliberation and commitment.
Journal ArticleDOI

Evolving neural networks through augmenting topologies

TL;DR: Neural Evolution of Augmenting Topologies (NEAT) as mentioned in this paper employs a principled method of crossover of different topologies, protecting structural innovation using speciation, and incrementally growing from minimal structure.
References
More filters

Genetic algorithms in search, optimization and machine learning

TL;DR: This book brings together the computer techniques, mathematical tools, and research results that will enable both students and practitioners to apply genetic algorithms to problems in many fields.
Book

Adaptation in natural and artificial systems

TL;DR: Names of founding work in the area of Adaptation and modiication, which aims to mimic biological optimization, and some (Non-GA) branches of AI.
Book

Dynamic Programming

TL;DR: The more the authors study the information processing aspects of the mind, the more perplexed and impressed they become, and it will be a very long time before they understand these processes sufficiently to reproduce them.
Book

Markov Decision Processes: Discrete Stochastic Dynamic Programming

TL;DR: Puterman as discussed by the authors provides a uniquely up-to-date, unified, and rigorous treatment of the theoretical, computational, and applied research on Markov decision process models, focusing primarily on infinite horizon discrete time models and models with discrete time spaces while also examining models with arbitrary state spaces, finite horizon models, and continuous time discrete state models.
Related Papers (5)