scispace - formally typeset
Search or ask a question
Book

Reinforcement Learning: An Introduction

TL;DR: This book provides a clear and simple account of the key ideas and algorithms of reinforcement learning, which ranges from the history of the field's intellectual foundations to the most recent developments and applications.
Abstract: Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives when interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the key ideas and algorithms of reinforcement learning. Their discussion ranges from the history of the field's intellectual foundations to the most recent developments and applications. The only necessary mathematical background is familiarity with elementary concepts of probability. The book is divided into three parts. Part I defines the reinforcement learning problem in terms of Markov decision processes. Part II provides basic solution methods: dynamic programming, Monte Carlo methods, and temporal-difference learning. Part III presents a unified view of the solution methods and incorporates artificial neural networks, eligibility traces, and planning; the two final chapters present case studies and consider the future of reinforcement learning.

Content maybe subject to copyright    Report

Citations
More filters
Book
18 Nov 2016
TL;DR: Deep learning as mentioned in this paper is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts, and it is used in many applications such as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames.
Abstract: Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.

38,208 citations

Journal ArticleDOI
26 Feb 2015-Nature
TL;DR: This work bridges the divide between high-dimensional sensory inputs and actions, resulting in the first artificial agent that is capable of learning to excel at a diverse array of challenging tasks.
Abstract: The theory of reinforcement learning provides a normative account, deeply rooted in psychological and neuroscientific perspectives on animal behaviour, of how agents may optimize their control of an environment. To use reinforcement learning successfully in situations approaching real-world complexity, however, agents are confronted with a difficult task: they must derive efficient representations of the environment from high-dimensional sensory inputs, and use these to generalize past experience to new situations. Remarkably, humans and other animals seem to solve this problem through a harmonious combination of reinforcement learning and hierarchical sensory processing systems, the former evidenced by a wealth of neural data revealing notable parallels between the phasic signals emitted by dopaminergic neurons and temporal difference reinforcement learning algorithms. While reinforcement learning agents have achieved some successes in a variety of domains, their applicability has previously been limited to domains in which useful features can be handcrafted, or to domains with fully observed, low-dimensional state spaces. Here we use recent advances in training deep neural networks to develop a novel artificial agent, termed a deep Q-network, that can learn successful policies directly from high-dimensional sensory inputs using end-to-end reinforcement learning. We tested this agent on the challenging domain of classic Atari 2600 games. We demonstrate that the deep Q-network agent, receiving only the pixels and the game score as inputs, was able to surpass the performance of all previous algorithms and achieve a level comparable to that of a professional human games tester across a set of 49 games, using the same algorithm, network architecture and hyperparameters. This work bridges the divide between high-dimensional sensory inputs and actions, resulting in the first artificial agent that is capable of learning to excel at a diverse array of challenging tasks.

23,074 citations

Journal ArticleDOI
TL;DR: This historical survey compactly summarizes relevant work, much of it from the previous millennium, review deep supervised learning, unsupervised learning, reinforcement learning & evolutionary computation, and indirect search for short programs encoding deep and large networks.

14,635 citations


Cites background from "Reinforcement Learning: An Introduc..."

  • ...Such NNs learn to perceive/encode/predict/ classify patterns or pattern sequences, but they do not learn to act in the more general sense of Reinforcement Learning (RL) in unknown environments (see surveys, e.g., Kaelbling et al., 1996; Sutton & Barto, 1998; Wiering & van Otterlo, 2012)....

    [...]

  • ...The latter is often explained in a probabilistic framework (e.g., Sutton & Barto, 1998), but its basic idea can already be conveyed in a deterministic setting....

    [...]

  • ...Such NNs learn to perceive / encode / predict / classify patterns or pattern sequences, but they do not learn to act in the more general sense of Reinforcement Learning (RL) in unknown environments (e.g., Kaelbling et al., 1996; Sutton and Barto, 1998)....

    [...]

  • ...Many variants of traditional RL exist (e.g., Barto et al., 1983; Watkins, 1989; Watkins and Dayan, 1992; Moore and Atkeson, 1993; Schwartz, 1993; Baird, 1994; Rummery and Niranjan, 1994; Singh, 1994; Baird, 1995; Kaelbling et al., 1995; Peng and Williams, 1996; Mahadevan, 1996; Tsitsiklis and van Roy, 1996; Bradtke et al., 1996; Santamarı́a et al., 1997; Prokhorov and Wunsch, 1997; Sutton and Barto, 1998; Wiering and Schmidhuber, 1998b; Baird and Moore, 1999; Meuleau et al., 1999; Morimoto and Doya, 2000; Bertsekas, 2001; Brafman and Tennenholtz, 2002; Abounadi et al., 2002; Lagoudakis and Parr, 2003; Sutton et al., 2008; Maei and Sutton, 2010)....

    [...]

  • ...This assumption does not hold in the broader fields of Sequential Decision Making and Reinforcement Learning (RL) (Kaelbling et al., 1996; Sutton and Barto, 1998; Hutter, 2005) (Sec....

    [...]

Journal ArticleDOI
28 Jan 2016-Nature
TL;DR: Using this search algorithm, the program AlphaGo achieved a 99.8% winning rate against other Go programs, and defeated the human European Go champion by 5 games to 0.5, the first time that a computer program has defeated a human professional player in the full-sized game of Go.
Abstract: The game of Go has long been viewed as the most challenging of classic games for artificial intelligence owing to its enormous search space and the difficulty of evaluating board positions and moves. Here we introduce a new approach to computer Go that uses ‘value networks’ to evaluate board positions and ‘policy networks’ to select moves. These deep neural networks are trained by a novel combination of supervised learning from human expert games, and reinforcement learning from games of self-play. Without any lookahead search, the neural networks play Go at the level of stateof-the-art Monte Carlo tree search programs that simulate thousands of random games of self-play. We also introduce a new search algorithm that combines Monte Carlo simulation with value and policy networks. Using this search algorithm, our program AlphaGo achieved a 99.8% winning rate against other Go programs, and defeated the human European Go champion by 5 games to 0. This is the first time that a computer program has defeated a human professional player in the full-sized game of Go, a feat previously thought to be at least a decade away.

14,377 citations

Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

References
More filters
Book
01 Mar 2014
TL;DR: This book presents the theory of General Game Playing and leading GGP technologies, and shows how to create GGP programs capable of competing against other programs and humans.
Abstract: General game players are computer systems able to play strategy games based solely on formal game descriptions supplied at "runtime" (n other words, they don't know the rules until the game starts). Unlike specialized game players, such as Deep Blue, general game players cannot rely on algorithms designed in advance for specific games; they must discover such algorithms themselves. General game playing expertise depends on intelligence on the part of the game player and not just intelligence of the programmer of the game player. GGP is an interesting application in its own right. It is intellectually engaging and more than a little fun. But it is much more than that. It provides a theoretical framework for modeling discrete dynamic systems and defining rationality in a way that takes into account problem representation and complexities like incompleteness of information and resource bounds. It has practical applications in areas where these features are important, e.g., in business and law. More fundamentally, it raises questions about the nature of intelligence and serves as a laboratory in which to evaluate competing approaches to artificial intelligence. This book is an elementary introduction to General Game Playing (GGP). (1) It presents the theory of General Game Playing and leading GGP technologies. (2) It shows how to create GGP programs capable of competing against other programs and humans. (3) It offers a glimpse of some of the real-world applications of General Game Playing.

85 citations


"Reinforcement Learning: An Introduc..." refers background in this paper

  • ...See also Glimcher and Fehr (2013). The text on computational and mathematical modeling in neuroscience by Dayan and Abbott (2001) includes reinforcement learning’s role in these approaches....

    [...]

Journal ArticleDOI
TL;DR: A finite-state Markov decision problem is considered and the convergence of a special case of optimistic policy iteration that involves Monte Carlo estimation of Q-values, in conjunction with greedy policy selection is established.
Abstract: We consider a finite-state Markov decision problem and establish the convergence of a special case of optimistic policy iteration that involves Monte Carlo estimation of Q-values, in conjunction with greedy policy selection. We provide convergence results for a number of algorithmic variations, including one that involves temporal difference learning (bootstrapping) instead of Monte Carlo estimation. We also indicate some extensions that either fail or are unlikely to go through.

83 citations

Journal ArticleDOI
TL;DR: This article introduces agent-to-trainer communication, which is used to disambiguate ambiguous training situations, and shows an alternative solution to the problem of ambiguous situations, which involves learning to coordinate behavior in a simpler, unambiguous setting and then transferring what has been learned to a more complex situation.
Abstract: This article is concerned with training an agent to perform sequential behavior. In previous work, we have been applying reinforcement learning techniques to control a reactive agent. Obviously, a purely reactive system is limited in the kind of interactions it can learn. In particular, it can learn what we call pseudosequences—that is, sequences of actions in which each action is selected on the basis of current sensory stimuli. It cannot learn proper sequences, in which actions must be selected also on the basis of some internal state. Moreover, it is a result of our research that effective learning of proper sequences is improved by letting the agent and the trainer communicate. First, we consider trainer-to-agent communication, introducing the concept of reinforcement sensor, which lets the learning robot explicitly know whether the last reinforcement was a reward or a punishment. We also show how the use of this sensor makes error recovery rules emerge. Then we introduce agent-to-trainer communicatio...

83 citations

Journal ArticleDOI
TL;DR: The basic design of these large-scale electronic computing machines is so general and flexible, however, that they can be adapted to work symbolically with elements representing words, propositions, or other conceptual entities.
Abstract: For centuries philosophers and scientists have speculated about whether or not the human brain is essentially a machine. Could a machine be designed that would be capable of “thinking”? During the past decade several large-scale electronic computing machines have been constructed which are capable of something very close to the reasoning process. These new computers were designed primarily to carry out purely numerical calculations. They perform automatically a long sequence of additions, multiplications, and other arithmetic operations at a rate of thousands per second. The basic design of these machines is so general and flexible, however, that they can be adapted to work symbolically with elements representing words, propositions, or other conceptual entities.

81 citations


"Reinforcement Learning: An Introduc..." refers background or methods in this paper

  • ...In describing how a computer could be programmed to play chess, Shannon (1950b) suggested using an evaluation function that took into account the long-term advantages and disadvantages of a chess position....

    [...]

  • ...Shannon (1950b) suggested that a function could be used by a chess-playing program to decide whether a move M in position P is worth exploring....

    [...]

Journal ArticleDOI
TL;DR: This article establishes that expensive chunks exist and analyzes their causes and proposes a solution based on the notion of restricting the expressiveness of the representational language to guarantee that the chunks formed will require only a limited amount of accessing effort.
Abstract: Soar is an architecture for a system that is intended to be capable of general intelligence. Chunking, a simple experience-based learning mechanism, is Soar's only learning mechanism. Chunking creates new items of information, called chunks, based on the results of problem-solving and stores them in the knowledge base. These chunks are accessed and used in appropriate later situations to avoid the problem-solving required to determine them. It is already well-established that chunking improves performance in Soar when viewed in terms of the subproblems required and the number of steps within a subproblem. However, despite the reduction in number of steps, sometimes there may be a severe degradation in the total run time. This problem arises due to expensive chunks, i.e., chunks that require a large amount of effort in accessing them from the knowledge base. They pose a major problem for Soar, since in their presence, no guarantees can be given about Soar's performance. In this article, we establish that expensive chunks exist and analyze their causes. We use this analysis to propose a solution for expensive chunks. The solution is based on the notion of restricting the expressiveness of the representational language to guarantee that the chunks formed will require only a limited amount of accessing effort. We analyze the tradeoffs involved in restricting expressiveness and present some empirical evidence to support our analysis.

81 citations