scispace - formally typeset
Search or ask a question
Book

Reinforcement Learning: An Introduction

TL;DR: This book provides a clear and simple account of the key ideas and algorithms of reinforcement learning, which ranges from the history of the field's intellectual foundations to the most recent developments and applications.
Abstract: Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives when interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the key ideas and algorithms of reinforcement learning. Their discussion ranges from the history of the field's intellectual foundations to the most recent developments and applications. The only necessary mathematical background is familiarity with elementary concepts of probability. The book is divided into three parts. Part I defines the reinforcement learning problem in terms of Markov decision processes. Part II provides basic solution methods: dynamic programming, Monte Carlo methods, and temporal-difference learning. Part III presents a unified view of the solution methods and incorporates artificial neural networks, eligibility traces, and planning; the two final chapters present case studies and consider the future of reinforcement learning.

Content maybe subject to copyright    Report

Citations
More filters
Book
18 Nov 2016
TL;DR: Deep learning as mentioned in this paper is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts, and it is used in many applications such as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames.
Abstract: Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.

38,208 citations

Journal ArticleDOI
26 Feb 2015-Nature
TL;DR: This work bridges the divide between high-dimensional sensory inputs and actions, resulting in the first artificial agent that is capable of learning to excel at a diverse array of challenging tasks.
Abstract: The theory of reinforcement learning provides a normative account, deeply rooted in psychological and neuroscientific perspectives on animal behaviour, of how agents may optimize their control of an environment. To use reinforcement learning successfully in situations approaching real-world complexity, however, agents are confronted with a difficult task: they must derive efficient representations of the environment from high-dimensional sensory inputs, and use these to generalize past experience to new situations. Remarkably, humans and other animals seem to solve this problem through a harmonious combination of reinforcement learning and hierarchical sensory processing systems, the former evidenced by a wealth of neural data revealing notable parallels between the phasic signals emitted by dopaminergic neurons and temporal difference reinforcement learning algorithms. While reinforcement learning agents have achieved some successes in a variety of domains, their applicability has previously been limited to domains in which useful features can be handcrafted, or to domains with fully observed, low-dimensional state spaces. Here we use recent advances in training deep neural networks to develop a novel artificial agent, termed a deep Q-network, that can learn successful policies directly from high-dimensional sensory inputs using end-to-end reinforcement learning. We tested this agent on the challenging domain of classic Atari 2600 games. We demonstrate that the deep Q-network agent, receiving only the pixels and the game score as inputs, was able to surpass the performance of all previous algorithms and achieve a level comparable to that of a professional human games tester across a set of 49 games, using the same algorithm, network architecture and hyperparameters. This work bridges the divide between high-dimensional sensory inputs and actions, resulting in the first artificial agent that is capable of learning to excel at a diverse array of challenging tasks.

23,074 citations

Journal ArticleDOI
TL;DR: This historical survey compactly summarizes relevant work, much of it from the previous millennium, review deep supervised learning, unsupervised learning, reinforcement learning & evolutionary computation, and indirect search for short programs encoding deep and large networks.

14,635 citations


Cites background from "Reinforcement Learning: An Introduc..."

  • ...Such NNs learn to perceive/encode/predict/ classify patterns or pattern sequences, but they do not learn to act in the more general sense of Reinforcement Learning (RL) in unknown environments (see surveys, e.g., Kaelbling et al., 1996; Sutton & Barto, 1998; Wiering & van Otterlo, 2012)....

    [...]

  • ...The latter is often explained in a probabilistic framework (e.g., Sutton & Barto, 1998), but its basic idea can already be conveyed in a deterministic setting....

    [...]

  • ...Such NNs learn to perceive / encode / predict / classify patterns or pattern sequences, but they do not learn to act in the more general sense of Reinforcement Learning (RL) in unknown environments (e.g., Kaelbling et al., 1996; Sutton and Barto, 1998)....

    [...]

  • ...Many variants of traditional RL exist (e.g., Barto et al., 1983; Watkins, 1989; Watkins and Dayan, 1992; Moore and Atkeson, 1993; Schwartz, 1993; Baird, 1994; Rummery and Niranjan, 1994; Singh, 1994; Baird, 1995; Kaelbling et al., 1995; Peng and Williams, 1996; Mahadevan, 1996; Tsitsiklis and van Roy, 1996; Bradtke et al., 1996; Santamarı́a et al., 1997; Prokhorov and Wunsch, 1997; Sutton and Barto, 1998; Wiering and Schmidhuber, 1998b; Baird and Moore, 1999; Meuleau et al., 1999; Morimoto and Doya, 2000; Bertsekas, 2001; Brafman and Tennenholtz, 2002; Abounadi et al., 2002; Lagoudakis and Parr, 2003; Sutton et al., 2008; Maei and Sutton, 2010)....

    [...]

  • ...This assumption does not hold in the broader fields of Sequential Decision Making and Reinforcement Learning (RL) (Kaelbling et al., 1996; Sutton and Barto, 1998; Hutter, 2005) (Sec....

    [...]

Journal ArticleDOI
28 Jan 2016-Nature
TL;DR: Using this search algorithm, the program AlphaGo achieved a 99.8% winning rate against other Go programs, and defeated the human European Go champion by 5 games to 0.5, the first time that a computer program has defeated a human professional player in the full-sized game of Go.
Abstract: The game of Go has long been viewed as the most challenging of classic games for artificial intelligence owing to its enormous search space and the difficulty of evaluating board positions and moves. Here we introduce a new approach to computer Go that uses ‘value networks’ to evaluate board positions and ‘policy networks’ to select moves. These deep neural networks are trained by a novel combination of supervised learning from human expert games, and reinforcement learning from games of self-play. Without any lookahead search, the neural networks play Go at the level of stateof-the-art Monte Carlo tree search programs that simulate thousands of random games of self-play. We also introduce a new search algorithm that combines Monte Carlo simulation with value and policy networks. Using this search algorithm, our program AlphaGo achieved a 99.8% winning rate against other Go programs, and defeated the human European Go champion by 5 games to 0. This is the first time that a computer program has defeated a human professional player in the full-sized game of Go, a feat previously thought to be at least a decade away.

14,377 citations

Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

References
More filters
Dissertation
01 Jan 2001
TL;DR: This thesis considers three complications that arise from applying reinforcement learning to a real-world application, and employs importance sampling (likelihood ratios) to achieve good performance in partially observable Markov decision processes with few data.
Abstract: This thesis considers three complications that arise from applying reinforcement learning to a real-world application. In the process of using reinforcement learning to build an adaptive electronic market-maker, we find the sparsity of data, the partial observability of the domain, and the multiple objectives of the agent to cause serious problems for existing reinforcement learning algorithms. We employ importance sampling (likelihood ratios) to achieve good performance in partially observable Markov decision processes with few data. Our importance sampling estimator requires no knowledge about the environment and places few restrictions on the method of collecting data. It can be used efficiently with reactive controllers, finite-state controllers, or policies with function approximation. We present theoretical analyses of the estimator and incorporate it into a reinforcement learning algorithm. Additionally, this method provides a complete return surface which can be used to balance multiple objectives dynamically. We demonstrate the need for multiple goals in a variety of applications and natural solutions based on our sampling method. The thesis concludes with example results from employing our algorithm to the domain of automated electronic market-making. Thesis Supervisor: Tomaso Poggio Title: Professor of Brain and Cognitive Science

79 citations

Book
01 Jan 1962
TL;DR: In this article, Thorp reveals the point system that has been successfully used by professional and amateur card players for two generations, and a winning strategy for the game of 21 is presented.
Abstract: New York Times Bestseller В Edward O. Thorp is the father of card counting, and in Beat the Dealer he reveals the revolutionary point system that has been successfully used by professional and amateur card players for two generations. From Las Vegas to Monte Carlo, the tables have been turned and the house no longer has the advantage at blackjack. В В В В В В В В В Containing the basic rules of the game, proven winning strategies, how to overcome casino counter measures and spot cheating. Beat the Dealer is the bible for players of this game of chance. Perforated cards included in the book are a convenient way to bring the strategies into the casino.В A winning strategy for the game of 21. The essentials, consolidated in simple charts, can be understood and memorized by the average player.From the Paperback edition.

76 citations

Proceedings Article
03 Jan 2001
TL;DR: Three ways of combining linear programming with the kernel trick to find value function approximations for reinforcement learning are presented, one based on SVM regression; the second is based on the Bellman equation; and the third seeks only to ensure that good moves have an advantage over bad moves.
Abstract: We present three ways of combining linear programming with the kernel trick to find value function approximations for reinforcement learning. One formulation is based on SVM regression; the second is based on the Bellman equation; and the third seeks only to ensure that good moves have an advantage over bad moves. All formulations attempt to minimize the number of support vectors while fitting the data. Experiments in a difficult, synthetic maze problem show that all three formulations give excellent performance, but the advantage formulation is much easier to train. Unlike policy gradient methods, the kernel methods described here can easily adjust the complexity of the function approximator to fit the complexity of the value function.

75 citations