scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Relative and absolute determination of fluorescence quantum yields of transparent samples

01 Aug 2013-Nature Protocols (Nat Protoc)-Vol. 8, Iss: 8, pp 1535-1550
TL;DR: This protocol describes procedures for relative and absolute determinations of Φf values of fluorophores in transparent solution using optical methods, and introduces a series of eight candidate quantum yield standards for the wavelength region of ∼350–950 nm.
Abstract: Luminescence techniques are among the most widely used detection methods in the life and material sciences. At the core of these methods is an ever-increasing variety of fluorescent reporters (i.e., simple dyes, fluorescent labels, probes, sensors and switches) from different fluorophore classes ranging from small organic dyes and metal ion complexes, quantum dots and upconversion nanocrystals to differently sized fluorophore-doped or fluorophore-labeled polymeric particles. A key parameter for fluorophore comparison is the fluorescence quantum yield (Φf), which is the direct measure for the efficiency of the conversion of absorbed light into emitted light. In this protocol, we describe procedures for relative and absolute determinations of Φf values of fluorophores in transparent solution using optical methods, and we address typical sources of uncertainty and fluorophore class-specific challenges. For relative determinations of Φf, the sample is analyzed using a conventional fluorescence spectrometer. For absolute determinations of Φf, a calibrated stand-alone integrating sphere setup is used. To reduce standard-related uncertainties for relative measurements, we introduce a series of eight candidate quantum yield standards for the wavelength region of ∼350-950 nm, which we have assessed with commercial and custom-designed instrumentation. With these protocols and standards, uncertainties of 5-10% can be achieved within 2 h.
Citations
More filters
Journal ArticleDOI
TL;DR: It is revealed that solution-processed organic-inorganic halide perovskites (CH3NH3PbX3), which demonstrated huge potential in photovoltaics, also have promising optical gain and may show electrically driven lasing.
Abstract: Low-temperature solution-processed materials that show optical gain and can be embedded into a wide range of cavity resonators are attractive for the realization of on-chip coherent light sources. Organic semiconductors and colloidal quantum dots are considered the main candidates for this application. However, stumbling blocks in organic lasing include intrinsic losses from bimolecular annihilation and the conflicting requirements of high charge carrier mobility and large stimulated emission; whereas challenges pertaining to Auger losses and charge transport in quantum dots still remain. Herein, we reveal that solution-processed organic-inorganic halide perovskites (CH 3 NH 3 PbX 3 where X = Cl, Br, I), which demonstrated huge potential in photovoltaics, also have promising optical gain. Their ultra-stable amplified spontaneous emission at strikingly low thresholds stems from their large absorption coefficients, ultralow bulk defect densities and slow Auger recombination. Straightforward visible spectral tunability (390-790 nm) is demonstrated. Importantly, in view of their balanced ambipolar charge transport characteristics, these materials may show electrically driven lasing. © 2014 Macmillan Publishers Limited.

2,691 citations

Journal ArticleDOI
Wei Zheng1, Ping Huang1, Datao Tu1, En Ma1, Haomiao Zhu1, Xueyuan Chen1 
TL;DR: This review focuses on the most recent advances in the development of lanthanide-doped UCNPs as potential luminescent nano-bioprobes by means of the authors' customized lanthanides photophysics measurement platforms specially designed for upconversion luminescence.
Abstract: Lanthanide-doped upconversion nanoparticles (UCNPs) have attracted considerable interest due to their superior physicochemical features, such as large anti-Stokes shifts, low autofluorescence background, low toxicity and high penetration depth, which make them extremely suitable for use as alternatives to conventional downshifting luminescence bioprobes like organic dyes and quantum dots for various biological applications. A fundamental understanding of the photophysics of lanthanide-doped UCNPs is of vital importance for discovering novel optical properties and exploring their new applications. In this review, we focus on the most recent advances in the development of lanthanide-doped UCNPs as potential luminescent nano-bioprobes by means of our customized lanthanide photophysics measurement platforms specially designed for upconversion luminescence, which covers from their fundamental photophysics to bioapplications, including electronic structures (energy levels and local site symmetry of emitters), excited-state dynamics, optical property designing, and their promising applications for in vitro biodetection of tumor markers. Some future prospects and efforts towards this rapidly growing field are also envisioned.

698 citations

Journal ArticleDOI
TL;DR: A series of low-bandgap donor/acceptor copolymers with tunable emission wavelengths of 1,050-1,350 nm allows for in vivo, deep-tissue and ultrafast imaging of mouse arterial blood flow with an unprecedented frame rate of >25 frames per second.
Abstract: In vivo fluorescence imaging in the second near-infrared window (1.0-1.7 μm) can afford deep tissue penetration and high spatial resolution, owing to the reduced scattering of long-wavelength photons. Here we synthesize a series of low-bandgap donor/acceptor copolymers with tunable emission wavelengths of 1,050-1,350 nm in this window. Non-covalent functionalization with phospholipid-polyethylene glycol results in water-soluble and biocompatible polymeric nanoparticles, allowing for live cell molecular imaging at >1,000 nm with polymer fluorophores for the first time. Importantly, the high quantum yield of the polymer allows for in vivo, deep-tissue and ultrafast imaging of mouse arterial blood flow with an unprecedented frame rate of >25 frames per second. The high time-resolution results in spatially and time resolved imaging of the blood flow pattern in cardiogram waveform over a single cardiac cycle (~200 ms) of a mouse, which has not been observed with fluorescence imaging in this window before.

444 citations

Journal ArticleDOI
TL;DR: Indocyanine green, a clinically approved near-IR dye, exhibits a remarkable amount of SWIR emission, which enables state-of-the-art SWIR imaging with direct translation potential into clinical settings, and even outperforms other commercially available SWIR emitters.
Abstract: Fluorescence imaging is a method of real-time molecular tracking in vivo that has enabled many clinical technologies. Imaging in the shortwave IR (SWIR; 1,000-2,000 nm) promises higher contrast, sensitivity, and penetration depths compared with conventional visible and near-IR (NIR) fluorescence imaging. However, adoption of SWIR imaging in clinical settings has been limited, partially due to the absence of US Food and Drug Administration (FDA)-approved fluorophores with peak emission in the SWIR. Here, we show that commercially available NIR dyes, including the FDA-approved contrast agent indocyanine green (ICG), exhibit optical properties suitable for in vivo SWIR fluorescence imaging. Even though their emission spectra peak in the NIR, these dyes outperform commercial SWIR fluorophores and can be imaged in the SWIR, even beyond 1,500 nm. We show real-time fluorescence imaging using ICG at clinically relevant doses, including intravital microscopy, noninvasive imaging in blood and lymph vessels, and imaging of hepatobiliary clearance, and show increased contrast compared with NIR fluorescence imaging. Furthermore, we show tumor-targeted SWIR imaging with IRDye 800CW-labeled trastuzumab, an NIR dye being tested in multiple clinical trials. Our findings suggest that high-contrast SWIR fluorescence imaging can be implemented alongside existing imaging modalities by switching the detection of conventional NIR fluorescence systems from silicon-based NIR cameras to emerging indium gallium arsenide-based SWIR cameras. Using ICG in particular opens the possibility of translating SWIR fluorescence imaging to human clinical applications. Indeed, our findings suggest that emerging SWIR-fluorescent in vivo contrast agents should be benchmarked against the SWIR emission of ICG in blood.

434 citations

Journal ArticleDOI
TL;DR: In this article, an overview is provided of quantitative studies of the upconversion quantum yield of upconverter materials, and of the achieved efficiency enhancements in upconverting solar cell devices.
Abstract: Upconversion of low-energy photons into high-energy photons increases the efficiency of photovoltaic devices by converting photons with energies below the absorption threshold of the solar cell into photons that can be utilized. In this review, an overview is provided of quantitative studies of the upconversion quantum yield of upconverter materials, and of the achieved efficiency enhancements in upconverting solar cell devices. Different materials and devices are compared based on well-defined figures-of-merit and the challenges to their accurate measurement are discussed. Internal upconversion quantum yields above 13% have been reported both for Er3+-based materials as well as for organic upconverters, using irradiance values below 0.4 W cm−2. On the upconverting solar cell device level, relative enhancements of the solar cells' short-circuit currents by up to 0.55% have been achieved. These values document progress by orders of magnitude achieved in the last years. However, they also show that the field of upconversion needs further development to become a relevant technology option in photovoltaics. Different options regarding how upconversion performance can be increased further in the future are outlined.

373 citations

References
More filters
Book
01 Jan 1983
TL;DR: This book describes the fundamental aspects of fluorescence, the biochemical applications of this methodology, and the instrumentation used in fluorescence spectroscopy.
Abstract: Fluorescence methods are being used increasingly in biochemical, medical, and chemical research. This is because of the inherent sensitivity of this technique. and the favorable time scale of the phenomenon of fluorescence. 8 Fluorescence emission occurs about 10- sec (10 nsec) after light absorp tion. During this period of time a wide range of molecular processes can occur, and these can effect the spectral characteristics of the fluorescent compound. This combination of sensitivity and a favorable time scale allows fluorescence methods to be generally useful for studies of proteins and membranes and their interactions with other macromolecules. This book describes the fundamental aspects of fluorescence. and the biochemical applications of this methodology. Each chapter starts with the -theoreticalbasis of each phenomenon of fluorescence, followed by examples which illustrate the use of the phenomenon in the study of biochemical problems. The book contains numerous figures. It is felt that such graphical presentations contribute to pleasurable reading and increased understand ing. Separate chapters are devoted to fluorescence polarization, lifetimes, quenching, energy transfer, solvent effects, and excited state reactions. To enhance the usefulness of this work as a textbook, problems are included which illustrate the concepts described in each chapter. Furthermore, a separate chapter is devoted to the instrumentation used in fluorescence spectroscopy. This chapter will be especially valuable for those perform ing or contemplating fluorescence measurements. Such measurements are easily compromised by failure to consider a number of simple principles."

28,073 citations


"Relative and absolute determination..." refers background in this paper

  • ...Molecular Fluorescence: Principles and Applications (Wiley, 2012). 3. Mason, W.T. Fluorescent and Luminescent Probes for Biological Activity (ed. Sattelle, D.B.) (Academic Press, 1999). 4. Weissleder, R. & Pittet, M.J. Imaging in the era of molecular oncology. Nature 452, 580–589 (2008). 5. Berezin, M.Y. & Achilefu, S. Fluorescence lifetime measurements and biological imaging. Chem. Rev. 110, 2641–2684 (2010). 6. Lavis, L.D. & Raines, R.T. Bright ideas for chemical biology. ACS Chem. Biol. 3, 142–155 (2008). 7. Giepmans, B.N.G., Adams, S.R., Ellisman, M.H. & Tsien, R.Y. The fluorescent toolbox for assessing protein location and function. Science 312, 217–224 (2006). 8. Kobayashi, H., Ogawa, M., Alford, R., Choyke, P.L. & Urano, Y. New strategies for fluorescent probe design in medical diagnostic imaging. Chem. Rev. 110, 2620–2640 (2010). 9. Boens, N., Leen, V. & Dehaen, W. Fluorescent indicators based on BODIPY. Chem. Soc. Rev. 41, 1130–1172 (2012). 10....

    [...]

  • ...Molecular Fluorescence: Principles and Applications (Wiley, 2012). 3. Mason, W.T. Fluorescent and Luminescent Probes for Biological Activity (ed. Sattelle, D.B.) (Academic Press, 1999). 4. Weissleder, R. & Pittet, M.J. Imaging in the era of molecular oncology. Nature 452, 580–589 (2008). 5. Berezin, M.Y. & Achilefu, S. Fluorescence lifetime measurements and biological imaging. Chem. Rev. 110, 2641–2684 (2010). 6. Lavis, L.D. & Raines, R.T. Bright ideas for chemical biology. ACS Chem. Biol. 3, 142–155 (2008). 7. Giepmans, B.N.G., Adams, S.R., Ellisman, M.H. & Tsien, R.Y. The fluorescent toolbox for assessing protein location and function. Science 312, 217–224 (2006). 8. Kobayashi, H., Ogawa, M., Alford, R., Choyke, P.L. & Urano, Y. New strategies for fluorescent probe design in medical diagnostic imaging. Chem. Rev. 110, 2620–2640 (2010). 9. Boens, N., Leen, V. & Dehaen, W. Fluorescent indicators based on BODIPY. Chem. Soc. Rev. 41, 1130–1172 (2012). 10. Resch-Genger, U., Grabolle, M., Cavaliere-Jaricot, S., Nitschke, R. & Nann, T. Quantum dots versus organic dyes as fluorescent labels. Nat. Methods 5, 763–775 (2008). 11. Han, J.Y. & Burgess, K. Fluorescent indicators for intracellular pH. Chem. Rev. 110, 2709–2728 (2010). 12....

    [...]

  • ...Molecular Fluorescence: Principles and Applications (Wiley, 2012). 3. Mason, W.T. Fluorescent and Luminescent Probes for Biological Activity (ed. Sattelle, D.B.) (Academic Press, 1999). 4. Weissleder, R. & Pittet, M.J. Imaging in the era of molecular oncology. Nature 452, 580–589 (2008). 5. Berezin, M.Y. & Achilefu, S. Fluorescence lifetime measurements and biological imaging. Chem. Rev. 110, 2641–2684 (2010). 6. Lavis, L.D. & Raines, R.T. Bright ideas for chemical biology. ACS Chem. Biol. 3, 142–155 (2008). 7. Giepmans, B.N.G., Adams, S.R., Ellisman, M.H. & Tsien, R.Y. The fluorescent toolbox for assessing protein location and function. Science 312, 217–224 (2006). 8. Kobayashi, H., Ogawa, M., Alford, R., Choyke, P.L. & Urano, Y. New strategies for fluorescent probe design in medical diagnostic imaging. Chem. Rev. 110, 2620–2640 (2010). 9. Boens, N., Leen, V. & Dehaen, W. Fluorescent indicators based on BODIPY. Chem. Soc. Rev. 41, 1130–1172 (2012). 10. Resch-Genger, U., Grabolle, M., Cavaliere-Jaricot, S., Nitschke, R. & Nann, T. Quantum dots versus organic dyes as fluorescent labels. Nat. Methods 5, 763–775 (2008). 11. Han, J.Y. & Burgess, K. Fluorescent indicators for intracellular pH. Chem. Rev. 110, 2709–2728 (2010). 12. Escobedo, J.O., Rusin, O., Lim, S. & Strongin, R.M. NIR dyes for bioimaging applications. Curr. Opin. Chem. Biol. 14, 64–70 (2010). 13....

    [...]

  • ...Molecular Fluorescence: Principles and Applications (Wiley, 2012). 3. Mason, W.T. Fluorescent and Luminescent Probes for Biological Activity (ed. Sattelle, D.B.) (Academic Press, 1999). 4. Weissleder, R. & Pittet, M.J. Imaging in the era of molecular oncology. Nature 452, 580–589 (2008). 5. Berezin, M.Y. & Achilefu, S. Fluorescence lifetime measurements and biological imaging. Chem. Rev. 110, 2641–2684 (2010). 6. Lavis, L.D. & Raines, R.T. Bright ideas for chemical biology. ACS Chem. Biol. 3, 142–155 (2008). 7. Giepmans, B.N.G., Adams, S.R., Ellisman, M.H. & Tsien, R.Y. The fluorescent toolbox for assessing protein location and function. Science 312, 217–224 (2006). 8. Kobayashi, H., Ogawa, M., Alford, R., Choyke, P.L. & Urano, Y. New strategies for fluorescent probe design in medical diagnostic imaging. Chem. Rev. 110, 2620–2640 (2010). 9. Boens, N., Leen, V. & Dehaen, W. Fluorescent indicators based on BODIPY. Chem. Soc. Rev. 41, 1130–1172 (2012). 10. Resch-Genger, U., Grabolle, M., Cavaliere-Jaricot, S., Nitschke, R. & Nann, T. Quantum dots versus organic dyes as fluorescent labels. Nat. Methods 5, 763–775 (2008). 11....

    [...]

  • ...Molecular Fluorescence: Principles and Applications (Wiley, 2012). 3. Mason, W.T. Fluorescent and Luminescent Probes for Biological Activity (ed. Sattelle, D.B.) (Academic Press, 1999). 4. Weissleder, R. & Pittet, M.J. Imaging in the era of molecular oncology. Nature 452, 580–589 (2008). 5. Berezin, M.Y. & Achilefu, S. Fluorescence lifetime measurements and biological imaging. Chem. Rev. 110, 2641–2684 (2010). 6. Lavis, L.D. & Raines, R.T. Bright ideas for chemical biology. ACS Chem. Biol. 3, 142–155 (2008). 7. Giepmans, B.N.G., Adams, S.R., Ellisman, M.H. & Tsien, R.Y. The fluorescent toolbox for assessing protein location and function. Science 312, 217–224 (2006). 8....

    [...]

Journal ArticleDOI
TL;DR: This review looks at current methods for preparing QD bioconjugates as well as presenting an overview of applications, and concludes that the potential of QDs in biology has just begun to be realized and new avenues will arise as the ability to manipulate these materials improves.
Abstract: One of the fastest moving and most exciting interfaces of nanotechnology is the use of quantum dots (QDs) in biology. The unique optical properties of QDs make them appealing as in vivo and in vitro fluorophores in a variety of biological investigations, in which traditional fluorescent labels based on organic molecules fall short of providing long-term stability and simultaneous detection of multiple signals. The ability to make QDs water soluble and target them to specific biomolecules has led to promising applications in cellular labelling, deep-tissue imaging, assay labelling and as efficient fluorescence resonance energy transfer donors. Despite recent progress, much work still needs to be done to achieve reproducible and robust surface functionalization and develop flexible bioconjugation techniques. In this review, we look at current methods for preparing QD bioconjugates as well as presenting an overview of applications. The potential of QDs in biology has just begun to be realized and new avenues will arise as our ability to manipulate these materials improves.

5,875 citations

BookDOI
25 Apr 2012
TL;DR: In this article, the effects of intermolecular photophysical processes on fluorescence emission are discussed and an analysis of the effect of polarity of fluorescence emissions is presented.
Abstract: Preface. Prologue. Introduction. Absorption of UV--visible light. Characteristics of Fluorescence Emission. Effects of Intermolecular Photophysical Processes on Fluorescence Emission. Fluorescence polarization: Emission Ansotropy. Principles of steady--state and time--resolved fluorometric techniques. Effect of polarity of fluorescence emission. Polarity probes. Microviscosity, fluidity, molecular mobility. Estimation by means of fluorescent probes. Resonance energy transfer and its applications. Fluorescent molecular sensors of ions and molecules. Advanced techniques in fluorescence spectroscopy. Epilogue. Index.

4,261 citations