scispace - formally typeset
Search or ask a question
Proceedings Article

Relative channel reciprocity calibration in MIMO/TDD systems

TL;DR: It is demonstrated that in a single-user MIMO channel and for low signal-to-noise (SNR) ratios, the relative calibration method can increase the capacity close to the theoretical limit.
Abstract: Channel state information at the transmitter (CSIT) can greatly improve the capacity of a wireless MIMO communication system. In a time division duplex (TDD) system CSIT can be obtained by exploiting the reciprocity of the wireless channel. This however requires calibration of the radio frequency (RF) chains of the receiver and the transmitter, which are in general not reciprocal. In this paper we investigate different methods for relative calibration in the presence of frequency offsets between transmitter and receiver. We show results of theses calibration methods with real two-directional channel measurements, which were performed using the Eure-com MIMO Openair Sounder (EMOS). We demonstrate that in a single-user MIMO channel and for low signal-to-noise (SNR) ratios, the relative calibration method can increase the capacity close to the theoretical limit.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: While massive MIMO renders many traditional research problems irrelevant, it uncovers entirely new problems that urgently need attention: the challenge of making many low-cost low-precision components that work effectively together, acquisition and synchronization for newly joined terminals, the exploitation of extra degrees of freedom provided by the excess of service antennas, reducing internal power consumption to achieve total energy efficiency reductions, and finding new deployment scenarios.
Abstract: Multi-user MIMO offers big advantages over conventional point-to-point MIMO: it works with cheap single-antenna terminals, a rich scattering environment is not required, and resource allocation is simplified because every active terminal utilizes all of the time-frequency bins. However, multi-user MIMO, as originally envisioned, with roughly equal numbers of service antennas and terminals and frequency-division duplex operation, is not a scalable technology. Massive MIMO (also known as large-scale antenna systems, very large MIMO, hyper MIMO, full-dimension MIMO, and ARGOS) makes a clean break with current practice through the use of a large excess of service antennas over active terminals and time-division duplex operation. Extra antennas help by focusing energy into ever smaller regions of space to bring huge improvements in throughput and radiated energy efficiency. Other benefits of massive MIMO include extensive use of inexpensive low-power components, reduced latency, simplification of the MAC layer, and robustness against intentional jamming. The anticipated throughput depends on the propagation environment providing asymptotically orthogonal channels to the terminals, but so far experiments have not disclosed any limitations in this regard. While massive MIMO renders many traditional research problems irrelevant, it uncovers entirely new problems that urgently need attention: the challenge of making many low-cost low-precision components that work effectively together, acquisition and synchronization for newly joined terminals, the exploitation of extra degrees of freedom provided by the excess of service antennas, reducing internal power consumption to achieve total energy efficiency reductions, and finding new deployment scenarios. This article presents an overview of the massive MIMO concept and contemporary research on the topic.

6,184 citations


Cites background from "Relative channel reciprocity calibr..."

  • ...Calibration of the hardware chains does not seem to constitute a serious problem and there are calibrationbased solutions that have already been tested to some extent in practice [3,12]....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the authors proposed a max-min power control algorithm to ensure uniformly good service throughout the area of coverage in a cell-free massive MIMO system, where each user is served by a dedicated access point.
Abstract: A Cell-Free Massive MIMO (multiple-input multiple-output) system comprises a very large number of distributed access points (APs), which simultaneously serve a much smaller number of users over the same time/frequency resources based on directly measured channel characteristics. The APs and users have only one antenna each. The APs acquire channel state information through time-division duplex operation and the reception of uplink pilot signals transmitted by the users. The APs perform multiplexing/de-multiplexing through conjugate beamforming on the downlink and matched filtering on the uplink. Closed-form expressions for individual user uplink and downlink throughputs lead to max–min power control algorithms. Max–min power control ensures uniformly good service throughout the area of coverage. A pilot assignment algorithm helps to mitigate the effects of pilot contamination, but power control is far more important in that regard. Cell-Free Massive MIMO has considerably improved performance with respect to a conventional small-cell scheme, whereby each user is served by a dedicated AP, in terms of both 95%-likely per-user throughput and immunity to shadow fading spatial correlation. Under uncorrelated shadow fading conditions, the cell-free scheme provides nearly fivefold improvement in 95%-likely per-user throughput over the small-cell scheme, and tenfold improvement when shadow fading is correlated.

1,234 citations

Posted Content
TL;DR: Under uncorrelated shadow fading conditions, the cell-free scheme provides nearly fivefold improvement in 95%-likely per-user throughput over the small-cell scheme, and tenfold improvement when shadow fading is correlated.
Abstract: A Cell-Free Massive MIMO (multiple-input multiple-output) system comprises a very large number of distributed access points (APs)which simultaneously serve a much smaller number of users over the same time/frequency resources based on directly measured channel characteristics. The APs and users have only one antenna each. The APs acquire channel state information through time-division duplex operation and the reception of uplink pilot signals transmitted by the users. The APs perform multiplexing/de-multiplexing through conjugate beamforming on the downlink and matched filtering on the uplink. Closed-form expressions for individual user uplink and downlink throughputs lead to max-min power control algorithms. Max-min power control ensures uniformly good service throughout the area of coverage. A pilot assignment algorithm helps to mitigate the effects of pilot contamination, but power control is far more important in that regard. Cell-Free Massive MIMO has considerably improved performance with respect to a conventional small-cell scheme, whereby each user is served by a dedicated AP, in terms of both 95%-likely per-user throughput and immunity to shadow fading spatial correlation. Under uncorrelated shadow fading conditions, the cell-free scheme provides nearly 5-fold improvement in 95%-likely per-user throughput over the small-cell scheme, and 10-fold improvement when shadow fading is correlated.

893 citations

Journal ArticleDOI
TL;DR: The preliminary outcomes of extensive research on mmWave massive MIMO are presented and emerging trends together with their respective benefits, challenges, and proposed solutions are highlighted to point out current trends, evolving research issues and future directions on this technology.
Abstract: Several enabling technologies are being explored for the fifth-generation (5G) mobile system era. The aim is to evolve a cellular network that remarkably pushes forward the limits of legacy mobile systems across all dimensions of performance metrics. One dominant technology that consistently features in the list of the 5G enablers is the millimeter-wave (mmWave) massive multiple-input-multiple-output (massive MIMO) system. It shows potentials to significantly raise user throughput, enhance spectral and energy efficiencies and increase the capacity of mobile networks using the joint capabilities of the huge available bandwidth in the mmWave frequency bands and high multiplexing gains achievable with massive antenna arrays. In this survey, we present the preliminary outcomes of extensive research on mmWave massive MIMO (as research on this subject is still in the exploratory phase) and highlight emerging trends together with their respective benefits, challenges, and proposed solutions. The survey spans broad areas in the field of wireless communications, and the objective is to point out current trends, evolving research issues and future directions on mmWave massive MIMO as a technology that will open up new frontiers of services and applications for next-generation cellular networks.

491 citations


Cites methods from "Relative channel reciprocity calibr..."

  • ...Though TDD simplifies CSI acquisition with the use of uplink pilots particularly for mmWave massive MIMO systems and is easily adopted for modeling and simulation studies, it does not account for ICIs specific to downlink transmission, it is prone to inaccuracies due to transmitter-receiver mismatch and as well as prone to pilot contamination effect which limits system performance [39], [64]....

    [...]

Journal ArticleDOI
TL;DR: An extensive survey on pilot contamination in massive MIMO systems is provided, and other possible sources of pilot contamination are identified, which include hardware impairment and non-reciprocal transceivers.
Abstract: Massive MIMO has been recognized as a promising technology to meet the demand for higher data capacity for mobile networks in 2020 and beyond. Although promising, each base station needs accurate estimation of the channel state information (CSI), either through feedback or channel reciprocity schemes in order to achieve the benefits of massive MIMO in practice. Time division duplex (TDD) has been suggested as a better mode to acquire timely CSI in massive MIMO systems. The use of non-orthogonal pilot schemes, proposed for channel estimation in multi-cell TDD networks, is considered as a major source of pilot contamination in the literature due to the limitations of coherence time. Given the importance of pilot contamination in massive MIMO systems, we provide an extensive survey on pilot contamination, and identify other possible sources of pilot contamination, which include hardware impairment and non-reciprocal transceivers. We review established theories that have analyzed the effect of pilot contamination on the performance of massive MIMO systems, particularly on achievable rates. Next, we categorize the different proposed mitigation techniques for pilot contamination using the following taxonomy: pilot-based approach and subspace-based approach. Finally, we highlight the open issues, such as training overhead, deployment scenario, computational complexity, use of channel reciprocity, and conclude with broader perspective and a look at future trends in pilot contamination in massive MIMO systems.

385 citations


Additional excerpts

  • ...ibration scheme as proposed in [119], [120]....

    [...]

References
More filters
Book
29 May 2003
TL;DR: This book is an accessible introduction to every fundamental aspect of space-time wireless communications and a powerful tool for improving system performance that already features in the UMTS and CDMA2000 mobile standards.
Abstract: Wireless networks are under constant pressure to provide ever-higher data rates to increasing numbers of users with greater reliability. This book is an accessible introduction to every fundamental aspect of space-time wireless communications. Space-time processing technology is a powerful tool for improving system performance that already features in the UMTS and CDMA2000 mobile standards. The ideal volume for graduate students and professionals, it features homework problems and other supporting material on a companion website.

3,798 citations

Journal ArticleDOI
TL;DR: It is explained how special structure of the weight matrix and the data matrix can be exploited for efficient cost function and first derivative computation that allows to obtain computationally efficient solution methods.

745 citations

Proceedings ArticleDOI
28 Aug 2005
TL;DR: Experimental results confirm the validity of the proposed linear reciprocity model, and of the calibration approach, which lets the transmitter acquire knowledge of the downlink channel state from the uplink channel estimates, through proper modeling and estimation of the RF circuitry impulse responses.
Abstract: We present a relative calibration method for a wireless TDD link, which, after a calibration phase involving feedback, lets the transmitter acquire knowledge of the downlink channel state from the uplink channel estimates, through proper modeling and estimation of the RF circuitry impulse responses. Contrarily to previous methods, relative calibration does not require specific calibration hardware. Experimental results confirm the validity of the proposed linear reciprocity model, and of the calibration approach.

276 citations


"Relative channel reciprocity calibr..." refers background or methods in this paper

  • ...Let us consider a series of K bi-directional channel measurements, i.e. both G(t) and H(t) are assumed to be measured simultaneously (or with negligible time difference) at times ti, i = 1 . . . K....

    [...]

  • ...This condition is added without loss of generality since the set of parameters (PA, PB) is over-determined: it can be seen from eq (4) that the family of solutions where PA and PB are multiplied with the same scalar factor indeed represents a single solution to the problem at hand....

    [...]

  • ...Contrarily to absolute calibration [2] where external reference sources are used to measure and compensate for the imperfections of each RF chain independently, we focus here on approaches relying on relative calibration [3, 4]....

    [...]

Journal ArticleDOI
TL;DR: In this article, a single-antenna reciprocity relation for the time domain is derived for the antenna on transmission; next, the same antenna is considered when it is receiving an incident plane wave.
Abstract: In this paper, a single-antenna reciprocity relation is derived for the time domain. First, the antenna is considered on transmission; next, the same antenna is considered when it is receiving an incident plane wave. The two states, transmission and reception, are related by the application of a modified form of the reciprocity theorem for electromagnetic fields with general time dependence due to Cheo. The derivation of the reciprocity relation for the antenna makes use of simple geometric arguments to evaluate the spatial/temporal integrals that occur in the theorem. A few extensions of the reciprocity relation are also described.

156 citations

Proceedings ArticleDOI
08 Sep 2003
TL;DR: In this article, the non-reciprocity of the base station analog hardware, which is part of the channel, introduces a very high level of multi-user interference and quantify the effect of the nonreciprocal by means of simulations.
Abstract: Channel reciprocity is needed in SDMA or MIMO downlink pre-filtering when the channel knowledge is acquired in the uplink. We first show analytically that the non-reciprocity of the base station analog hardware, which is part of the channel, introduces a very high level of multi-user interference and quantify the effect of the non-reciprocity by means of simulations. We then propose a novel calibration technique at the base station that enables to compensate for the non-reciprocity and reduce the MUI to a negligible value while having a low implementation cost.

136 citations