scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Relativistic electron beams driven by kHz single-cycle light pulses

TL;DR: In this paper, single-cycle laser pulses are used to drive high-quality MeV relativistic electron beams, thereby enabling kHz operation and dramatic downsizing of the laser system.
Abstract: Laser-plasma acceleration(1,2) is an emerging technique for accelerating electrons to high energies over very short distances. The accelerated electron bunches have femtosecond duration(3,4), making them particularly relevant for applications such as ultrafast imaging(5) or femtosecond X-ray generation(6,7). Current laser-plasma accelerators deliver 100 MeV (refs 8-10) to GeV (refs 11, 12) electrons using Joule-class laser systems that are relatively large in scale and have low repetition rates, with a few shots per second at best. Nevertheless, extending laser-plasma acceleration to higher repetition rates would be extremely useful for applications requiring lower electron energy. Here, we use single-cycle laser pulses to drive high-quality MeV relativistic electron beams, thereby enabling kHz operation and dramatic downsizing of the laser system. Numerical simulations indicate that the electron bunches are only similar to 1 fs long. We anticipate that the advent of these kHz femtosecond relativistic electron sources will pave the way to applications with wide impact, such as ultrafast electron diffraction in materials(13,14) with an unprecedented sub-10 fs resolution(15).
Citations
More filters
Journal Article
TL;DR: A method, which utilizes the large difference in ionization potentials between successive ionization states of trace atoms, for injecting electrons into a laser-driven wakefield is presented, and a mixture of helium and trace amounts of nitrogen gas was used.
Abstract: A method, which utilizes the large difference in ionization potentials between successive ionization states of trace atoms, for injecting electrons into a laser-driven wakefield is presented. Here a mixture of helium and trace amounts of nitrogen gas was used. Electrons from the K shell of nitrogen were tunnel ionized near the peak of the laser pulse and were injected into and trapped by the wake created by electrons from majority helium atoms and the L shell of nitrogen. The spectrum of the accelerated electrons, the threshold intensity at which trapping occurs, the forward transmitted laser spectrum, and the beam divergence are all consistent with this injection process. The experimental measurements are supported by theory and 3D OSIRIS simulations.

382 citations

Journal ArticleDOI
TL;DR: The STEAM device demonstrates the feasibility of terahertz-based electron accelerators, manipulators and diagnostic tools, enabling science beyond current resolution frontiers with transformative impact.
Abstract: Acceleration and manipulation of electron bunches underlie most electron and X-ray devices used for ultrafast imaging and spectroscopy. New terahertz-driven concepts offer orders-of-magnitude improvements in field strengths, field gradients, laser synchronization and compactness relative to conventional radiofrequency devices, enabling shorter electron bunches and higher resolution with less infrastructure while maintaining high charge capacities (pC), repetition rates (kHz) and stability. We present a segmented terahertz electron accelerator and manipulator (STEAM) capable of performing multiple high-field operations on the six-dimensional phase space of ultrashort electron bunches. With this single device, powered by few-microjoule, single-cycle, 0.3 THz pulses, we demonstrate record terahertz acceleration of >30 keV, streaking with 2 kT m–1 strength, compression to ~100 fs as well as real-time switching between these modes of operation. The STEAM device demonstrates the feasibility of terahertz-based electron accelerators, manipulators and diagnostic tools, enabling science beyond current resolution frontiers with transformative impact.

236 citations

Journal ArticleDOI
TL;DR: The goal of this review article is to present the current state of this intriguing radiotherapy technique by reviewing existing publications on FLASH radiotherapy (RT) in terms of its physical and biological aspects.
Abstract: Ultrahigh dose-rate radiotherapy (RT), or 'FLASH' therapy, has gained significant momentum following various in vivo studies published since 2014 which have demonstrated a reduction in normal tissue toxicity and similar tumor control for FLASH-RT when compared with conventional dose-rate RT. Subsequent studies have sought to investigate the potential for FLASH normal tissue protection and the literature has been since been inundated with publications on FLASH therapies. Today, FLASH-RT is considered by some as having the potential to 'revolutionize radiotherapy'. FLASH-RT is considered by some as having the potential to 'revolutionize radiotherapy'. The goal of this review article is to present the current state of this intriguing RT technique and to review existing publications on FLASH-RT in terms of its physical and biological aspects. In the physics section, the current landscape of ultrahigh dose-rate radiation delivery and dosimetry is presented. Specifically, electron, photon and proton radiation sources capable of delivering ultrahigh dose-rates along with their beam delivery parameters are thoroughly discussed. Additionally, the benefits and drawbacks of radiation detectors suitable for dosimetry in FLASH-RT are presented. The biology section comprises a summary of pioneering in vitro ultrahigh dose-rate studies performed in the 1960s and early 1970s and continues with a summary of the recent literature investigating normal and tumor tissue responses in electron, photon and proton beams. The section is concluded with possible mechanistic explanations of the FLASH normal-tissue protection effect (FLASH effect). Finally, challenges associated with clinical translation of FLASH-RT and its future prospects are critically discussed; specifically, proposed treatment machines and publications on treatment planning for FLASH-RT are reviewed.

115 citations

Journal ArticleDOI
TL;DR: The New Journal of Physics 2020 Plasma Accelerator Roadmap provides a summary overview of the field and insights into the research needs and developments for an international audience of scientists, including graduate students and researchers entering the field as mentioned in this paper.
Abstract: Author(s): Albert, F; Couprie, ME; Debus, A; Downer, MC; Faure, J; Flacco, A; Gizzi, LA; Grismayer, T; Huebl, A; Joshi, C; Labat, M; Leemans, WP; Maier, AR; Mangles, SPD; Mason, P; Mathieu, F; Muggli, P; Nishiuchi, M; Osterhoff, J; Rajeev, PP; Schramm, U; Schreiber, J; Thomas, AGR; Vay, JL; Vranic, M; Zeil, K | Abstract: Plasma-based accelerators use the strong electromagnetic fields that can be supported by plasmas to accelerate charged particles to high energies. Accelerating field structures in plasma can be generated by powerful laser pulses or charged particle beams. This research field has recently transitioned from involving a few small-scale efforts to the development of national and international networks of scientists supported by substantial investment in large-scale research infrastructure. In this New Journal of Physics 2020 Plasma Accelerator Roadmap, perspectives from experts in this field provide a summary overview of the field and insights into the research needs and developments for an international audience of scientists, including graduate students and researchers entering the field.

84 citations

Journal ArticleDOI
TL;DR: In this article, a low energy and high repetition rate laser system was used to accelerate the laser-plasma accelerator (LPA) to the resonant blowout regime with peak energy distributions in the few MeV range and relatively narrow divergence angles.
Abstract: We report on recent progress on laser-plasma acceleration using a low energy and high-repetition rate laser system. Using only few milliJoule laser energy, in conjunction with extremely short pulses composed of a single optical cycle, we demonstrate that the laser-plasma accelerator ( LPA) can be operated close to the resonant blowout regime. This results in the production of high charge electron beams (> 10 pC) with peaked energy distributions in the few MeV range and relatively narrow divergence angles. We highlight the importance of the plasma density profile and gas jet design for the performance of the LPA. In this extreme regime of relativistic laser-plasma interaction with near-single-cycle laser pulses, we find that the effect of group velocity dispersion and carrier envelope phase can no longer be neglected. These advances bring LPAs closer to real scientific applications in ultrafast probing.

74 citations

References
More filters
Journal ArticleDOI
TL;DR: In this paper, an intense electromagnetic pulse can create a weak of plasma oscillations through the action of the nonlinear ponderomotive force, and electrons trapped in the wake can be accelerated to high energy.
Abstract: An intense electromagnetic pulse can create a weak of plasma oscillations through the action of the nonlinear ponderomotive force. Electrons trapped in the wake can be accelerated to high energy. Existing glass lasers of power density ${10}^{18}$W/${\mathrm{cm}}^{2}$ shone on plasmas of densities ${10}^{18}$ ${\mathrm{cm}}^{\ensuremath{-}3}$ can yield gigaelectronvolts of electron energy per centimeter of acceleration distance. This acceleration mechanism is demonstrated through computer simulation. Applications to accelerators and pulsers are examined.

3,867 citations


"Relativistic electron beams driven ..." refers background in this paper

  • ...Abstract Laser-plasma acceleration [1, 2] is an emerging technique for accelerating electrons to high energies over very short distances....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the basic physics of laser pulse evolution in underdense plasmas is also reviewed, including the propagation, self-focusing, and guiding of laser pulses in uniform density channels and with preformed density channels.
Abstract: Laser-driven plasma-based accelerators, which are capable of supporting fields in excess of 100 GV/m, are reviewed. This includes the laser wakefield accelerator, the plasma beat wave accelerator, the self-modulated laser wakefield accelerator, plasma waves driven by multiple laser pulses, and highly nonlinear regimes. The properties of linear and nonlinear plasma waves are discussed, as well as electron acceleration in plasma waves. Methods for injecting and trapping plasma electrons in plasma waves are also discussed. Limits to the electron energy gain are summarized, including laser pulse diffraction, electron dephasing, laser pulse energy depletion, and beam loading limitations. The basic physics of laser pulse evolution in underdense plasmas is also reviewed. This includes the propagation, self-focusing, and guiding of laser pulses in uniform plasmas and with preformed density channels. Instabilities relevant to intense short-pulse laser-plasma interactions, such as Raman, self-modulation, and hose instabilities, are discussed. Experiments demonstrating key physics, such as the production of high-quality electron bunches at energies of 0.1-1 GeV, are summarized.

2,108 citations


"Relativistic electron beams driven ..." refers background in this paper

  • ...Abstract Laser-plasma acceleration [1, 2] is an emerging technique for accelerating electrons to high energies over very short distances....

    [...]

Journal ArticleDOI
30 Sep 2004-Nature
TL;DR: It is demonstrated that this randomization of electrons in phase space can be suppressed and that the quality of the electron beams can be dramatically enhanced.
Abstract: Particle accelerators are used in a wide variety of fields, ranging from medicine and biology to high-energy physics. The accelerating fields in conventional accelerators are limited to a few tens of MeV m(-1), owing to material breakdown at the walls of the structure. Thus, the production of energetic particle beams currently requires large-scale accelerators and expensive infrastructures. Laser-plasma accelerators have been proposed as a next generation of compact accelerators because of the huge electric fields they can sustain (>100 GeV m(-1)). However, it has been difficult to use them efficiently for applications because they have produced poor-quality particle beams with large energy spreads, owing to a randomization of electrons in phase space. Here we demonstrate that this randomization can be suppressed and that the quality of the electron beams can be dramatically enhanced. Within a length of 3 mm, the laser drives a plasma bubble that traps and accelerates plasma electrons. The resulting electron beam is extremely collimated and quasi-monoenergetic, with a high charge of 0.5 nC at 170 MeV.

1,854 citations

Journal ArticleDOI
08 Jul 2004-Nature
TL;DR: A laser accelerator that produces electron beams with an energy spread of a few per cent, low emittance and increased energy (more than 109 electrons above 80 MeV) and opens the way for compact and tunable high-brightness sources of electrons and radiation.
Abstract: Laser-driven accelerators, in which particles are accelerated by the electric field of a plasma wave (the wakefield) driven by an intense laser, have demonstrated accelerating electric fields of hundreds of GV m-1 (refs 1–3) These fields are thousands of times greater than those achievable in conventional radio-frequency accelerators, spurring interest in laser accelerators4,5 as compact next-generation sources of energetic electrons and radiation To date, however, acceleration distances have been severely limited by the lack of a controllable method for extending the propagation distance of the focused laser pulse The ensuing short acceleration distance results in low-energy beams with 100 per cent electron energy spread1,2,3, which limits potential applications Here we demonstrate a laser accelerator that produces electron beams with an energy spread of a few per cent, low emittance and increased energy (more than 109 electrons above 80 MeV) Our technique involves the use of a preformed plasma density channel to guide a relativistically intense laser, resulting in a longer propagation distance The results open the way for compact and tunable high-brightness sources of electrons and radiation

1,749 citations

Journal ArticleDOI
30 Sep 2004-Nature
TL;DR: High-resolution energy measurements of the electron beams produced from intense laser–plasma interactions are reported, showing that—under particular plasma conditions—it is possible to generate beams of relativistic electrons with low divergence and a small energy spread.
Abstract: High-power lasers that fit into a university-scale laboratory can now reach focused intensities of more than 10(19) W cm(-2) at high repetition rates. Such lasers are capable of producing beams of energetic electrons, protons and gamma-rays. Relativistic electrons are generated through the breaking of large-amplitude relativistic plasma waves created in the wake of the laser pulse as it propagates through a plasma, or through a direct interaction between the laser field and the electrons in the plasma. However, the electron beams produced from previous laser-plasma experiments have a large energy spread, limiting their use for potential applications. Here we report high-resolution energy measurements of the electron beams produced from intense laser-plasma interactions, showing that--under particular plasma conditions--it is possible to generate beams of relativistic electrons with low divergence and a small energy spread (less than three per cent). The monoenergetic features were observed in the electron energy spectrum for plasma densities just above a threshold required for breaking of the plasma wave. These features were observed consistently in the electron spectrum, although the energy of the beam was observed to vary from shot to shot. If the issue of energy reproducibility can be addressed, it should be possible to generate ultrashort monoenergetic electron bunches of tunable energy, holding great promise for the future development of 'table-top' particle accelerators.

1,739 citations