scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Remote para-C-H Functionalization of Arenes by a D-Shaped Biphenyl Template-Based Assembly.

11 Sep 2015-Journal of the American Chemical Society (American Chemical Society)-Vol. 137, Iss: 37, pp 11888-11891
TL;DR: An easily recyclable, novel Si-containing biphenyl-based template is reported that directs efficient functionalization of the distal p-C-H bond of toluene by forming a D-shaped assembly that allows the required flexibility to support the formation of an oversized pre-transition state.
Abstract: Site-selective C-H functionalization has emerged as an efficient tool in simplifying the synthesis of complex molecules. Most often, directing group (DG)-assisted metallacycle formation serves as an efficient strategy to ensure promising regioselectivity. A wide variety of ortho- and meta-C-H functionalizations stand as examples in this regard. Yet despite this significant progress, DG-assisted selective para-C-H functionalization in arenes has remained unexplored, mainly because it involves the formation of a geometrically constrained metallacyclic transition state. Here we report an easily recyclable, novel Si-containing biphenyl-based template that directs efficient functionalization of the distal p-C-H bond of toluene by forming a D-shaped assembly. This DG allows the required flexibility to support the formation of an oversized pre-transition state. By overcoming electronic and steric bias, para-olefination and acetoxylation were successfully performed while undermining o- and m-C-H activation. The applicability of this D-shaped biphenyl template-based strategy is demonstrated by synthesizing various complex molecules.
Citations
More filters
Journal ArticleDOI
TL;DR: The present review is devoted to summarizing the recent advances (2015–2017) in the field of metal-catalysed group-directed C–H functionalisation.
Abstract: The present review is devoted to summarizing the recent advances (2015-2017) in the field of metal-catalysed group-directed C-H functionalisation In order to clearly showcase the molecular diversity that can now be accessed by means of directed C-H functionalisation, the whole is organized following the directing groups installed on a substrate Its aim is to be a comprehensive reference work, where a specific directing group can be easily found, together with the transformations which have been carried out with it Hence, the primary format of this review is schemes accompanied with a concise explanatory text, in which the directing groups are ordered in sections according to their chemical structure The schemes feature typical substrates used, the products obtained as well as the required reaction conditions Importantly, each example is commented on with respect to the most important positive features and drawbacks, on aspects such as selectivity, substrate scope, reaction conditions, directing group removal, and greenness The targeted readership are both experts in the field of C-H functionalisation chemistry (to provide a comprehensive overview of the progress made in the last years) and, even more so, all organic chemists who want to introduce the C-H functionalisation way of thinking for a design of straightforward, efficient and step-economic synthetic routes towards molecules of interest to them Accordingly, this review should be of particular interest also for scientists from industrial R&D sector Hence, the overall goal of this review is to promote the application of C-H functionalisation reactions outside the research groups dedicated to method development and establishing it as a valuable reaction archetype in contemporary R&D, comparable to the role cross-coupling reactions play to date

1,057 citations

Journal ArticleDOI
08 Nov 2017
TL;DR: In this paper, the main uses of hexafluoroisopropanol (HFIP) in the natural sciences and the underlying principles that give it such wide appeal are discussed. And the broad usage and beneficial effects in many areas of chemistry are shown.
Abstract: 1,1,1,3,3,3-Hexafluoroisopropanol (HFIP) has recently become a very popular solvent or additive with applications across the spectrum of chemistry. Analysis shows that it possesses a wide range of interesting and unique properties. In this Perspective, we detail the main uses of HFIP in the natural sciences and disclose the underlying principles that give it such wide appeal. Accordingly, we show the broad usage and beneficial effects in many areas of chemistry. Reviewing the applications of a solvent would ordinarily be an unusual thing to do, but the unique properties of hexafluoroisopropanol and its applications across a huge swathe of chemistry make that both a viable and interesting undertaking.

471 citations

Journal ArticleDOI
TL;DR: This review describes recent advances in transition metal-catalyzed divergent C-H bond functionalization that highlight its potential in organic synthesis.
Abstract: Recent advances in transition metal-catalyzed C–H bond functionalization have profoundly impacted synthetic strategy Since organic substrates typically contain several chemically distinct C–H bonds, controlling the regioselectivity of C–H bond functionalization is imperative to harness its full potential Moreover, the ability to alter reaction pathways to selectively functionalize different C–H bonds in a substrate represents a greater opportunity and challenge The choice of catalysts, ligands, solvents, and even more subtle variations of the reaction conditions have been shown to allow the formation of regioisomeric C–H functionalization products starting from the same precursors This review describes recent advances in transition metal-catalyzed divergent C–H bond functionalization that highlight its potential in organic synthesis

364 citations

Journal ArticleDOI
TL;DR: Various easily removable or transformable directing groups utilized in the transition metal-catalyzed oxidative C–H alkenylations are discussed in this review until February 2017.
Abstract: The transition metal-catalyzed transformation of otherwise inert C–H bonds into substituted alkenes offers a versatile tool for the synthesis of value added olefinic molecules. Recent developments in the directing group assisted C–H activation approach ensured high levels of positional selectivity. A vast number of coordinating groups have been utilized in directed C–H alkenylation, which are often not removable after the desired transformation. However, the concept of easily removable or traceless directing group strategy overcomes this limitation and enables site-selective C–H alkenylation of relevance to academia and the practitioners in industry. Various easily removable or transformable directing groups utilized in the transition metal-catalyzed oxidative C–H alkenylations are discussed in this review until February 2017.

272 citations

Journal ArticleDOI
TL;DR: This Review compiles the significant achievements made in this field of both meta- and para-selectivity using covalently attached directing groups, which are systematically classified on the basis of their mode of covalent attachment to the substrate as well as their chemical nature.
Abstract: Directing group assisted ortho-C-H activation has been known for the last few decades. In contrast, extending the same approach to achieve activation of the distal meta- and para-C-H bonds in aromatic molecules remained elusive for a long time. The main challenge is the conception of a macrocyclic transition state, which is needed to anchor the metal catalyst close to the target bond. Judicious modification of the chain length, the tether linkage, and the nature of the catalyst-coordinating donor atom has led to a number of successful studies in the last few years. This Review compiles the significant achievements made in this field of both meta- and para-selectivity using covalently attached directing groups, which are systematically classified on the basis of their mode of covalent attachment to the substrate as well as their chemical nature. This Review aims to create a more heuristic approach for recognizing the suitability of the directing groups for use in future organic transformations.

250 citations

References
More filters
Journal ArticleDOI
TL;DR: This is the first comprehensive review encompassing the large body of work in this field over the past 5 years, and will focus specifically on ligand-directed C–H functionalization reactions catalyzed by palladium.
Abstract: 1.1 Introduction to Pd-catalyzed directed C–H functionalization The development of methods for the direct conversion of carbon–hydrogen bonds into carbon-oxygen, carbon-halogen, carbon-nitrogen, carbon-sulfur, and carbon-carbon bonds remains a critical challenge in organic chemistry. Mild and selective transformations of this type will undoubtedly find widespread application across the chemical field, including in the synthesis of pharmaceuticals, natural products, agrochemicals, polymers, and feedstock commodity chemicals. Traditional approaches for the formation of such functional groups rely on pre-functionalized starting materials for both reactivity and selectivity. However, the requirement for installing a functional group prior to the desired C–O, C–X, C–N, C–S, or C–C bond adds costly chemical steps to the overall construction of a molecule. As such, circumventing this issue will not only improve atom economy but also increase the overall efficiency of multi-step synthetic sequences. Direct C–H bond functionalization reactions are limited by two fundamental challenges: (i) the inert nature of most carbon-hydrogen bonds and (ii) the requirement to control site selectivity in molecules that contain diverse C–H groups. A multitude of studies have addressed the first challenge by demonstrating that transition metals can react with C–H bonds to produce C–M bonds in a process known as “C–H activation”.1 The resulting C–M bonds are far more reactive than their C–H counterparts, and in many cases they can be converted to new functional groups under mild conditions. The second major challenge is achieving selective functionalization of a single C–H bond within a complex molecule. While several different strategies have been employed to address this issue, the most common (and the subject of the current review) involves the use of substrates that contain coordinating ligands. These ligands (often termed “directing groups”) bind to the metal center and selectively deliver the catalyst to a proximal C–H bond. Many different transition metals, including Ru, Rh, Pt, and Pd, undergo stoichiometric ligand-directed C–H activation reactions (also known as cyclometalation).2,3 Furthermore, over the past 15 years, a variety of catalytic carbon-carbon bond-forming processes have been developed that involve cyclometalation as a key step.1b–d,4 The current review will focus specifically on ligand-directed C–H functionalization reactions catalyzed by palladium. Palladium complexes are particularly attractive catalysts for such transformations for several reasons. First, ligand-directed C–H functionalization at Pd centers can be used to install many different types of bonds, including carbon-oxygen, carbon-halogen, carbon-nitrogen, carbon-sulfur, and carbon-carbon linkages. Few other catalysts allow such diverse bond constructions,5,6,7 and this versatility is predominantly the result of two key features: (i) the compatibility of many PdII catalysts with oxidants and (ii) the ability to selectively functionalize cyclopalladated intermediates. Second, palladium participates in cyclometalation with a wide variety of directing groups, and, unlike many other transition metals, promotes C–H activation at both sp2 and sp3 C–H sites. Finally, the vast majority of Pd-catalyzed directed C–H functionalization reactions can be performed in the presence of ambient air and moisture, making them exceptionally practical for applications in organic synthesis. While several accounts have described recent advances, this is the first comprehensive review encompassing the large body of work in this field over the past 5 years (2004–2009). Both synthetic applications and mechanistic aspects of these transformations are discussed where appropriate, and the review is organized on the basis of the type of bond being formed.

5,179 citations

Journal ArticleDOI
TL;DR: A review of palladium-catalyzed coupling of CH bonds with organometallic reagents through a PdII/Pd0 catalytic cycle can be found in this paper.
Abstract: Pick your Pd partners: A number of catalytic systems have been developed for palladium-catalyzed CH activation/CC bond formation. Recent studies concerning the palladium(II)-catalyzed coupling of CH bonds with organometallic reagents through a PdII/Pd0 catalytic cycle are discussed (see scheme), and the versatility and practicality of this new mode of catalysis are presented. Unaddressed questions and the potential for development in the field are also addressed. In the past decade, palladium-catalyzed CH activation/CC bond-forming reactions have emerged as promising new catalytic transformations; however, development in this field is still at an early stage compared to the state of the art in cross-coupling reactions using aryl and alkyl halides. This Review begins with a brief introduction of four extensively investigated modes of catalysis for forming CC bonds from CH bonds: PdII/Pd0, PdII/PdIV, Pd0/PdII/PdIV, and Pd0/PdII catalysis. A more detailed discussion is then directed towards the recent development of palladium(II)-catalyzed coupling of CH bonds with organometallic reagents through a PdII/Pd0 catalytic cycle. Despite the progress made to date, improving the versatility and practicality of this new reaction remains a tremendous challenge.

3,533 citations

Journal ArticleDOI
TL;DR: This review focuses on Rh-catalyzed methods for C-H bond functionalization, which have seen widespread success over the course of the last decade and are discussed in detail in the accompanying articles in this special issue of Chemical Reviews.
Abstract: Once considered the 'holy grail' of organometallic chemistry, synthetically useful reactions employing C-H bond activation have increasingly been developed and applied to natural product and drug synthesis over the past decade. The ubiquity and relative low cost of hydrocarbons makes C-H bond functionalization an attractive alternative to classical C-C bond forming reactions such as cross-coupling, which require organohalides and organometallic reagents. In addition to providing an atom economical alternative to standard cross - coupling strategies, C-H bond functionalization also reduces the production of toxic by-products, thereby contributing to the growing field of reactions with decreased environmental impact. In the area of C-C bond forming reactions that proceed via a C-H activation mechanism, rhodium catalysts stand out for their functional group tolerance and wide range of synthetic utility. Over the course of the last decade, many Rh-catalyzed methods for heteroatom-directed C-H bond functionalization have been reported and will be the focus of this review. Material appearing in the literature prior to 2001 has been reviewed previously and will only be introduced as background when necessary. The synthesis of complex molecules from relatively simple precursors has long been a goal for many organic chemists. The ability to selectively functionalize a molecule with minimal pre-activation can streamline syntheses and expand the opportunities to explore the utility of complex molecules in areas ranging from the pharmaceutical industry to materials science. Indeed, the issue of selectivity is paramount in the development of all C-H bond functionalization methods. Several groups have developed elegant approaches towards achieving selectivity in molecules that possess many sterically and electronically similar C-H bonds. Many of these approaches are discussed in detail in the accompanying articles in this special issue of Chemical Reviews. One approach that has seen widespread success involves the use of a proximal heteroatom that serves as a directing group for the selective functionalization of a specific C-H bond. In a survey of examples of heteroatom-directed Rh catalysis, two mechanistically distinct reaction pathways are revealed. In one case, the heteroatom acts as a chelator to bind the Rh catalyst, facilitating reactivity at a proximal site. In this case, the formation of a five-membered metallacycle provides a favorable driving force in inducing reactivity at the desired location. In the other case, the heteroatom initially coordinates the Rh catalyst and then acts to stabilize the formation of a metal-carbon bond at a proximal site. A true test of the utility of a synthetic method is in its application to the synthesis of natural products or complex molecules. Several groups have demonstrated the applicability of C-H bond functionalization reactions towards complex molecule synthesis. Target-oriented synthesis provides a platform to test the effectiveness of a method in unique chemical and steric environments. In this respect, Rh-catalyzed methods for C-H bond functionalization stand out, with several syntheses being described in the literature that utilize C-H bond functionalization in a key step. These syntheses are highlighted following the discussion of the method they employ.

3,210 citations