scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Remote sensing for agricultural applications: A meta-review

TL;DR: In this paper, the authors present the agronomical variables and plant traits that can be estimated by remote sensing, and describe the empirical and deterministic approaches to retrieve them, and provide a synthesis of the emerging opportunities that should strengthen the role of remote sensing in providing operational, efficient and long-term services for agricultural applications.
About: This article is published in Remote Sensing of Environment.The article was published on 2020-01-01 and is currently open access. It has received 631 citations till now. The article focuses on the topics: Ecosystem services & Agriculture.
Citations
More filters
Journal ArticleDOI
TL;DR: An overview of remote sensing systems, techniques, and vegetation indices along with their recent (2015–2020) applications in Precision agriculture is provided.
Abstract: Agriculture provides for the most basic needs of humankind: food and fiber. The introduction of new farming techniques in the past century (e.g., during the Green Revolution) has helped agriculture keep pace with growing demands for food and other agricultural products. However, further increases in food demand, a growing population, and rising income levels are likely to put additional strain on natural resources. With growing recognition of the negative impacts of agriculture on the environment, new techniques and approaches should be able to meet future food demands while maintaining or reducing the environmental footprint of agriculture. Emerging technologies, such as geospatial technologies, Internet of Things (IoT), Big Data analysis, and artificial intelligence (AI), could be utilized to make informed management decisions aimed to increase crop production. Precision agriculture (PA) entails the application of a suite of such technologies to optimize agricultural inputs to increase agricultural production and reduce input losses. Use of remote sensing technologies for PA has increased rapidly during the past few decades. The unprecedented availability of high resolution (spatial, spectral and temporal) satellite images has promoted the use of remote sensing in many PA applications, including crop monitoring, irrigation management, nutrient application, disease and pest management, and yield prediction. In this paper, we provide an overview of remote sensing systems, techniques, and vegetation indices along with their recent (2015–2020) applications in PA. Remote-sensing-based PA technologies such as variable fertilizer rate application technology in Green Seeker and Crop Circle have already been incorporated in commercial agriculture. Use of unmanned aerial vehicles (UAVs) has increased tremendously during the last decade due to their cost-effectiveness and flexibility in obtaining the high-resolution (cm-scale) images needed for PA applications. At the same time, the availability of a large amount of satellite data has prompted researchers to explore advanced data storage and processing techniques such as cloud computing and machine learning. Given the complexity of image processing and the amount of technical knowledge and expertise needed, it is critical to explore and develop a simple yet reliable workflow for the real-time application of remote sensing in PA. Development of accurate yet easy to use, user-friendly systems is likely to result in broader adoption of remote sensing technologies in commercial and non-commercial PA applications.

291 citations

Journal ArticleDOI
TL;DR: This review is intended to assist agricultural researchers and practitioners to better understand the strengths and limitations of hyperspectral imaging to agricultural applications and promote the adoption of this valuable technology.
Abstract: Remote sensing is a useful tool for monitoring spatio-temporal variations of crop morphological and physiological status and supporting practices in precision farming. In comparison with multispectral imaging, hyperspectral imaging is a more advanced technique that is capable of acquiring a detailed spectral response of target features. Due to limited accessibility outside of the scientific community, hyperspectral images have not been widely used in precision agriculture. In recent years, different mini-sized and low-cost airborne hyperspectral sensors (e.g., Headwall Micro-Hyperspec, Cubert UHD 185-Firefly) have been developed, and advanced spaceborne hyperspectral sensors have also been or will be launched (e.g., PRISMA, DESIS, EnMAP, HyspIRI). Hyperspectral imaging is becoming more widely available to agricultural applications. Meanwhile, the acquisition, processing, and analysis of hyperspectral imagery still remain a challenging research topic (e.g., large data volume, high data dimensionality, and complex information analysis). It is hence beneficial to conduct a thorough and in-depth review of the hyperspectral imaging technology (e.g., different platforms and sensors), methods available for processing and analyzing hyperspectral information, and recent advances of hyperspectral imaging in agricultural applications. Publications over the past 30 years in hyperspectral imaging technology and applications in agriculture were thus reviewed. The imaging platforms and sensors, together with analytic methods used in the literature, were discussed. Performances of hyperspectral imaging for different applications (e.g., crop biophysical and biochemical properties’ mapping, soil characteristics, and crop classification) were also evaluated. This review is intended to assist agricultural researchers and practitioners to better understand the strengths and limitations of hyperspectral imaging to agricultural applications and promote the adoption of this valuable technology. Recommendations for future hyperspectral imaging research for precision agriculture are also presented.

282 citations


Cites background from "Remote sensing for agricultural app..."

  • ...is capable of identifying within-field variability of soils and crops and providing useful information for site-specific management practices [1,2]....

    [...]

Journal ArticleDOI
TL;DR: Five emerging technologies, namely the Internet of Things, robotics, artificial intelligence, big data analytics, and blockchain, toward Agriculture 4.0 are discussed and the key applications of these emerging technologies in the agricultural sector are focused on.
Abstract: The three previous industrial revolutions profoundly transformed agriculture industry from indigenous farming to mechanized farming and recent precision agriculture. Industrial farming paradigm greatly improves productivity, but a number of challenges have gradually emerged, which have exacerbated in recent years. Industry 4.0 is expected to reshape the agriculture industry once again and promote the fourth agricultural revolution. In this article, first, we review the current status of industrial agriculture along with lessons learned from industrialized agricultural production patterns, industrialized agricultural production processes, and the industrialized agri-food supply chain. Furthermore, five emerging technologies, namely the Internet of Things, robotics, artificial intelligence, big data analytics, and blockchain, toward Agriculture 4.0 are discussed. Specifically, we focus on the key applications of these emerging technologies in the agricultural sector and corresponding research challenges. This article aims to open up new research opportunities for readers, particularly industrial practitioners.

224 citations


Cites background from "Remote sensing for agricultural app..."

  • ...Large-scale farmland monitoring, crop identification, and yield forecasting are available through remote sensing [30]....

    [...]

Journal ArticleDOI
TL;DR: An attempt has been made to explore the types of sensors suitable for smart farming, potential requirements and challenges for operating UAVs in smart agriculture, and the future applications of using UAV's in smart farming.
Abstract: In the next few years, smart farming will reach each and every nook of the world. The prospects of using unmanned aerial vehicles (UAV) for smart farming are immense. However, the cost and the ease in controlling UAVs for smart farming might play an important role for motivating farmers to use UAVs in farming. Mostly, UAVs are controlled by remote controllers using radio waves. There are several technologies such as Wi-Fi or ZigBee that are also used for controlling UAVs. However, Smart Bluetooth (also referred to as Bluetooth Low Energy) is a wireless technology used to transfer data over short distances. Smart Bluetooth is cheaper than other technologies and has the advantage of being available on every smart phone. Farmers can use any smart phone to operate their respective UAVs along with Bluetooth Smart enabled agricultural sensors in the future. However, certain requirements and challenges need to be addressed before UAVs can be operated for smart agriculture-related applications. Hence, in this article, an attempt has been made to explore the types of sensors suitable for smart farming, potential requirements and challenges for operating UAVs in smart agriculture. We have also identified the future applications of using UAVs in smart farming.

201 citations

Journal ArticleDOI
01 May 2020-Agronomy
TL;DR: It is concluded that Sentinel-2 has a wide range of useful applications in agriculture, yet still with room for further improvements, and compared the panoply of satellites currently in use for land remote sensing that are relevant for agriculture to the Sentinel- 2 A + B constellation features.
Abstract: The use of satellites to monitor crops and support their management is gathering increasing attention. The improved temporal, spatial, and spectral resolution of the European Space Agency (ESA) launched Sentinel-2 A + B twin platform is paving the way to their popularization in precision agriculture. Besides the Sentinel-2 A + B constellation technical features the open-access nature of the information they generate, and the available support software are a significant improvement for agricultural monitoring. This paper was motivated by the challenges faced by researchers and agrarian institutions entering this field; it aims to frame remote sensing principles and Sentinel-2 applications in agriculture. Thus, we reviewed the features and uses of Sentinel-2 in precision agriculture, including abiotic and biotic stress detection, and agricultural management. We also compared the panoply of satellites currently in use for land remote sensing that are relevant for agriculture to the Sentinel-2 A + B constellation features. Contrasted with previous satellite image systems, the Sentinel-2 A + B twin platform has dramatically increased the capabilities for agricultural monitoring and crop management worldwide. Regarding crop stress monitoring, Sentinel-2 capacities for abiotic and biotic stresses detection represent a great step forward in many ways though not without its limitations; therefore, combinations of field data and different remote sensing techniques may still be needed. We conclude that Sentinel-2 has a wide range of useful applications in agriculture, yet still with room for further improvements. Current and future ways that Sentinel-2 can be utilized are also discussed.

160 citations

References
More filters
Journal ArticleDOI
Noel Gorelick1, M. Hancher1, Mike J. Dixon1, Simon Ilyushchenko1, David Thau1, Rebecca Moore1 
TL;DR: Google Earth Engine is a cloud-based platform for planetary-scale geospatial analysis that brings Google's massive computational capabilities to bear on a variety of high-impact societal issues including deforestation, drought, disaster, disease, food security, water management, climate monitoring and environmental protection.

6,262 citations

Journal ArticleDOI
TL;DR: In this paper, a conceptual framework and typology for describing, classifying and valuing ecosystem functions, goods and services in a clear and consistent manner is presented. And a classification is given for the fullest possible range of 23 ecosystem functions.

4,081 citations

Journal ArticleDOI
TL;DR: The benefits of the new, re-designed DSSAT-CSM will provide considerable opportunities to its developers and others in the scientific community for greater cooperation in interdisciplinary research and in the application of knowledge to solve problems at field, farm, and higher levels.

3,339 citations

Journal ArticleDOI
TL;DR: This review has revealed that RF classifier can successfully handle high data dimensionality and multicolinearity, being both fast and insensitive to overfitting.
Abstract: A random forest (RF) classifier is an ensemble classifier that produces multiple decision trees, using a randomly selected subset of training samples and variables. This classifier has become popular within the remote sensing community due to the accuracy of its classifications. The overall objective of this work was to review the utilization of RF classifier in remote sensing. This review has revealed that RF classifier can successfully handle high data dimensionality and multicolinearity, being both fast and insensitive to overfitting. It is, however, sensitive to the sampling design. The variable importance (VI) measurement provided by the RF classifier has been extensively exploited in different scenarios, for example to reduce the number of dimensions of hyperspectral data, to identify the most relevant multisource remote sensing and geographic data, and to select the most suitable season to classify particular target classes. Further investigations are required into less commonly exploited uses of this classifier, such as for sample proximity analysis to detect and remove outliers in the training samples.

3,244 citations

Journal ArticleDOI
TL;DR: The Surface Energy Balance Algorithm for Land (SEBAL) as mentioned in this paper estimates the spatial variation of most essential hydro-meteorological parameters empirically, and requires only field information on short wave atmospheric transmittance, surface temperature and vegetation height.

2,628 citations