scispace - formally typeset
Search or ask a question
Book ChapterDOI

Remote sensing of the ignorosphere: Need for a complete earth-ionosphere radio wave propagation model

Sujay Pal1
01 Jan 2018-Vol. 53, pp 527-543
TL;DR: In this article, a short review on retrieval mechanism of the D-region ionospheric plasma using sub-ionospheric VLF/LF data is presented, where the authors discuss importance of VLFs/LFs observation techniques and significant earth-ionosphere propagation models to diagnose electron-ion distribution in the lower ionosphere.
Abstract: We present a short review on retrieval mechanism of the D-region ionospheric plasma using sub-ionospheric VLF/LF data. First, we discuss importance of VLF/LF observation techniques and significant earth-ionosphere propagation models to diagnose electron-ion distribution in the lower ionosphere. Then we discuss about VLF/LF perturbations due to different geophysical phenomena and corresponding numerical simulations applied to retrieve the state of the D-region ionosphere.
Citations
More filters
01 Jul 2018
TL;DR: In this paper, the effects of the total solar eclipse on the VLF signal were investigated using the knowledge of the lower ionospheric chemical and physical properties, which is not well studied till date.
Abstract: The variation in the solar Extreme Ultraviolet (EUV) radiation flux by any measure is the most dominant natural source to produce perturbations or modulations in the ionospheric chemical and plasma properties. A solar eclipse, though a very rare phenomenon, is similarly bound to produce a significant short time effect on the local ionospheric properties. The influence of the ionizing solar flux reduction during a solar eclipse on the lower ionosphere or, more precisely, the D-region, can be studied with the observation of Very Low Frequency (VLF) radio wave signal modulation. The interpretation of such an effect on VLF signals requires a knowledge of the D-region ion chemistry, which is not well studied till date. Dominant parameters which govern the ion chemistry, such as the recombination coefficients, are poorly known. The occurrence of events such as a solar eclipse provides us with an excellent opportunity to investigate the accuracy of our knowledge of the chemical condition in this part of Earth’s atmosphere and the properties which control the ionospheric stability under such disturbances. In this paper, using existing knowledge of the lower ionospheric chemical and physical properties we carry out an interpretation of the effects obtained during the total solar eclipse of 22 of July 2009 on the VLF signal. Data obtained from a week long campaign conducted by the Indian Centre for Space Physics (ICSP) over the Indian subcontinent has been used for this purpose. Both positive and negative amplitude changes during the eclipse were observed along various receiver locations. In this paper, data for a propagation path between a Indian Navy VLF transmitter named VTX3 and a pair of receivers in India are used. We start from the observed solar flux during the eclipse and calculate the ionization during the whole time span over most of the influenced region in a range of height. We incorporate a D-region ion-chemistry model to find the equilibrium ion density over the region and employ the LWPC code to find the VLF signal amplitude. To tackle the uncertainty in the values of the recombination coefficients we explore a range of values in the chemical evolution model. We achieve two goals by this exercise: First, we have been able to reproduce the trends, if not the exact signal variation, of the VLF signal modulations during a solar eclipse at two different receiving stations with sufficient accuracy purely from theoretical modeling, and second our knowledge of some of the D-region ion-chemistry parameters is now improved.

14 citations

Journal ArticleDOI
TL;DR: In this article, the D-region ionospheric disturbances due to the tropical cyclone Fani over the Indian Ocean have been analyzed using Very Low Frequency (VLF) radio communication signals from three transmitters (VTX, NWC and JJI) received at two low latitude stations (Kolkata-CUB and Cooch Behar-CHB).
Abstract: The D-region ionospheric disturbances due to the tropical cyclone Fani over the Indian Ocean have been analysed using Very Low Frequency (VLF) radio communication signals from three transmitters (VTX, NWC and JJI) received at two low latitude stations (Kolkata-CUB and Cooch Behar-CHB). The cyclone Fani formed from a depression on 26th April, 2019 over the Bay of Bengal (Northeastern part of the Indian Ocean) and turned into an extremely severe cyclone with maximum 1-minute sustained winds of 250 km/h on 2 May, 2019 which made landfall on 3 May, 2019. Out of six propagation paths, five propagation paths, except the JJI-CHB which was far away from the cyclone track, showed strong perturbations beyond 3 σ level compared to unperturbed signals. Consistent good correlations of VLF signal perturbations with the wind speed and cyclone pressure have been seen for both the receiving stations. Computations of radio signal perturbations at CUB and CHB using the Long Wave Propagation Capability (LWPC) code revealed a Gaussian perturbation in the D-region ionosphere. Analysis of atmospheric temperature at different layers from the NASA’s TIMED satellite revealed a cooling effect near the tropopause and warming effects near the stratopause and upper mesosphere regions on 3 May, 2019. This study shows that the cyclone Fani perturbed the whole atmosphere, from troposphere to ionosphere and the VLF waves responded to the disturbances in the conductivity profiles of the lower ionosphere.

7 citations

01 Dec 2006
TL;DR: In this article, a new class of early/fast VLF events with recoveries of up to 20 min was introduced, much longer than typical Early/fast and Lightning-induced Electron Precipitation (LEP) events which recover to pre-event levels in ≲200 s.
Abstract: [1] We introduce a new class of Early/fast VLF events with recoveries of up to 20 min, much longer than typical Early/fast and Lightning-induced Electron Precipitation (LEP) events which recover to pre-event levels in ≲200 s. Three distinct types of long recovery events are observed, each exhibiting different characteristics, with the observed features of at least some of the event types consistent with the possibility of persistent ionization at altitudes below 60 km as put forth by Lehtinen and Inan (2007).

5 citations

Journal ArticleDOI
TL;DR: In this article, the authors reported disturbance in the mid-latitude sub-ionospheric VLF radio signals due to the super geomagnetic storm which began on 17 March 2015.
Abstract: This paper reports disturbance in the mid-latitude sub-ionospheric VLF radio signals due to the super geomagnetic storm which began on 17 March 2015. Narrow-band signals from the NAA transmitter are studied for the storm period recorded at eight mid-latitude receiving stations spread over the Europe and USA. Daytime signals amplitude at all places showed a disturbing pattern after 17 March. Fluctuation in the nighttime signals significantly increased in the succeeding nights. As a primary effect of the storm, the entire diurnal signals in the transoceanic west to east long propagation paths enhanced by 3–5 dB, which gradually decreased over the period of ~ 10 days following the storm recovery. A different behavior was observed in the east to west short propagation paths over the landmass, where during the peak storm the daily variations of the VLF amplitude reduced to 20–25% of a normal day and, after ~ 10 days the signals returned to the pre-storm condition. Modeling of the radio waves in the west to east paths shows that the D-region electron density was increased by ~ 8-fold and varied up to 10 days. Electron density variations in the D-region closely follows the variations of precipitated electron flux as observed by the POES satellite over the region. The elevated electron density in the D-region ionosphere caused by the extension of the auroral precipitation to the mid-latitudes along with interference among the various waveguide modes in the earth-ionosphere waveguide during the storm is suggested for the cause of observed VLF signals behaviors.

3 citations

References
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors re-examined the satellite accelerometer data during the January 2009 sudden stratospheric warming (SSW) and showed that there is no evidence at any latitude for a large-scale or global decrease in upper thermosphere density or temperature in response to the SSW.
Abstract: [1] It has recently been suggested that observations of neutral density from satellite accelerometer data indicate a strong cooling occurred in the upper thermosphere during the January 2009 sudden stratospheric warming (SSW). The 2009 warming was a major event with winter polar stratospheric temperatures increasing by 70 K. This January period has been re-examined with three independent models: the NRLMSISE-00 empirical model; the physics-based coupled thermosphere, ionosphere, plasmasphere, electrodynamics model (CTIPe); and the whole atmosphere model (WAM). The analysis of this period and comparison with the neutral density observations reveals that there is, in fact, no evidence at any latitude for a large-scale or global decrease in upper thermosphere density or temperature in response to the SSW. The observed decrease in density and temperature can be amply accounted for by small changes in geomagnetic activity during this period. On the contrary, the WAM numerical simulations of the period suggest a possible small globally averaged upper thermosphere warming and neutral density increase by 5% during the SSW. This warming would have been difficult to discern in the local-time sampling of the CHAMP observations due to likely change in the diurnal density variation during the SSW, and due to a much larger contribution to the variability from geomagnetic sources. At this stage, therefore, it is not possible to ascertain if a cooling or warming occurred in the upper thermosphere in response to the stratospheric warming.

34 citations

Journal ArticleDOI
TL;DR: In this paper, the authors studied the spatial-temporal dynamics of wave total electron content (TEC) disturbances over two periods of ranges (02-20min and 20-60min) to select the ionospheric disturbances which were most likely to be associated with the cyclones.
Abstract: Ionospheric response to tropical cyclones (TCs) was estimated experimentally on the example of three powerful cyclones – KATRINA (23–31 August 2005), RITA (18–26 September 2005), and WILMA (15–25 October 2005). These TCs were active near the USA Atlantic coast. Investigation was based on Total Electron Content (TEC) data from the international network of two-frequency ground-based GPS receivers and the NCEP/NCAR Reanalysis data. We studied the spatial–temporal dynamics of wave TEC disturbances over two periods of ranges (02–20 min and 20–60 min). To select the ionospheric disturbances which were most likely to be associated with the cyclones, maps of TEC disturbances were compared with those of meteorological parameters.

33 citations

01 Jan 2014
TL;DR: In this paper, the effect of solar X-ray radiation on the ionospheric D-region was investigated and the effective electron recombination coefficient (αeff) at solar flare peak region was calculated.
Abstract: Excess solar X-ray radiation during solar flares causes an enhancement of ionization in the ionospheric D-region and hence affects sub-ionospherically propagating VLF signal amplitude and phase. VLF signal amplitude perturbation (ΔA) and amplitude time delay (Δt) (vis-a-vis corresponding X-ray light curve as measured by GOES-15) of NWC/19.8 kHz signal have been computed for solar flares which is detected by us during Jan–Sep 2011. The signal is recorded by SoftPAL facility of IERC/ICSP, Sitapur (22∘ 27′N, 87∘ 45′E), West Bengal, India. In first part of the work, using the well known LWPC technique, we simulated the flare induced excess lower ionospheric electron density by amplitude perturbation method. Unperturbed D-region electron density is also obtained from simulation and compared with IRI-model results. Using these simulation results and time delay as key parameters, we calculate the effective electron recombination coefficient (αeff) at solar flare peak region. Our results match with the same obtained by other established models. In the second part, we dealt with the solar zenith angle effect on D-region during flares. We relate this VLF data with the solar X-ray data. We find that the peak of the VLF amplitude occurs later than the time of the X-ray peak for each flare. We investigate this so-called time delay (Δt). For the C-class flares we find that there is a direct correspondence between Δt of a solar flare and the average solar zenith angle Z over the signal propagation path at flare occurrence time. Now for deeper analysis, we compute the Δt for different local diurnal time slots DT. We find that while the time delay is anti-correlated with the flare peak energy flux ϕmax independent of these time slots, the goodness of fit, as measured by reduced-χ2, actually worsens as the day progresses. The variation of the Z dependence of reduced-χ2 seems to follow the variation of standard deviation of Z along the Tx-Rx propagation path. In other words, for the flares having almost constant Z over the path a tighter anti-correlation between Δt and ϕmax was observed.

30 citations

Journal ArticleDOI
TL;DR: Inan et al. as discussed by the authors identified the wide angle scattering sources as the thin (∼ 1 km) vertical columns of plasma as predicted by Dowden et al [1994] and seen as the luminous columns of sprites.
Abstract: The events described by Inan et al. [1995b] in the paper under comment here, and earlier as “VLF sprites” [ Inan et al., 1995a], refer to VLF scattering confined to a very narrow range about the forward direction. This must be produced by horizontally extensive (few hundred km) ionospheric disturbances with a Gaussian shape as suggested by them. Such scattering is quite at odds with the very wide angle VLF scattering (even to 180°) observed by Dowden et al. [1995]. The reason for this is not due to differences in receiving equipment or data interpretation, but due to the scattering sources being quite different in size and shape. The narrow angle scattering sources may be the recently discovered “elves” (Emissions of Light and VLF perturbations from EMP) produced by the electromagnetic pulse (EMP) of lightning. The wide angle scattering sources have been identified as the thin (∼ 1 km) vertical columns of plasma as predicted by Dowden et al. [1994] and seen as the luminous columns of sprites.

27 citations

Journal ArticleDOI
TL;DR: In this article, the authors compared the results of a modified mode conversion model with those of the original model, where height gain functions are discarded above some height h in the guide and are approximated below height h by Airy functions.
Abstract: Previously a mode conversion model was presented which allowed for both the vertical inhomogeneity and anisotropy of the ionosphere. Horizontal inhomogeneity along the direction of propagation was modeled by a slab approximation. The required height gain functions were determined by full-wave solutions and their associated integrals evaluated numerically. In this paper results of a modified mode conversion model are compared with those of the original. In the modified model, height gain functions are discarded above some height h in the guide and are approximated below height h by Airy functions. Merits of the modified version are that a full-wave program for height gains is not required, and that the associated integrals may be performed analytically. An obvious disadvantage is the free parameter h. The modified mode conversion model can be implemented with about the same ease as a WKB method and has one distinct advantage over the latter, namely, that mode numbering in any given slab is immaterial. Results of both mode conversion models are compared at several frequencies in the VLF band with experimental sunrise results obtained with a multifrequency oblique sounder system located on the island of Hawaii. In particular, comparisons are made with vertical field measurements in southern California. Approximate agreement is found. Discrepancies between modelling results and data are generally larger than the differences between the two mode conversion models.

27 citations